Aufgaben:Aufgabe 4.11: Frequenzbereichsbetrachtung der 4–QAM: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(11 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:P_ID1720__Mod_A_4_10.png|right|]]
+
[[Datei:Mod_A_4_10_vers2.png|right|frame|Leistungsdichtespektren von <br>BPSK und 4-QAM]]
Ausgehend von der binären Phasenmodulation (BPSK) mit rechteckförmigem Grundimpuls $g_s(t)$ der Breite $T_B = 1 μs$ und der Amplitude $s_0 = 2 V$ soll nun in dieser Aufgabe das Leistungsdichtespektrum (LDS) der 4–QAM schrittweise ermittelt werden.
+
Ausgehend von der &nbsp;[[Modulationsverfahren/Lineare_digitale_Modulation#BPSK_.E2.80.93_Binary_Phase_Shift_Keying|BPSK]]&nbsp; (binäre Phasenmodulation)&nbsp; mit rechteckförmigem Grundimpuls &nbsp;$g_s(t)$&nbsp; der Breite &nbsp;$T_{\rm B} = 1 \ \rm &micro; s$&nbsp; und der Amplitude &nbsp;$s_0 = 2 \ \rm  V$&nbsp; soll das Leistungsdichtespektrum&nbsp; $\rm (LDS)$&nbsp; der &nbsp;[[Modulationsverfahren/Quadratur–Amplitudenmodulation#Signalverl.C3.A4ufe_der_4.E2.80.93QAM|4–QAM]]&nbsp; schrittweise ermittelt werden.
 +
 
 +
In der &nbsp;[[Aufgaben:4.7_Spektren_von_ASK_und_BPSK| Aufgabe 4.7]]&nbsp; wurde das Leistungdichtespektrum &nbsp;${\it Φ}_s(f)$&nbsp; der BPSK für genau diese Parameterwerte ermittelt.&nbsp; Mit
 +
:$$A = s_0^2 \cdot T_{\rm B} = 4 \cdot 10^{-6}\,{\rm V^2/Hz}$$
 +
erhält man für das tatsächliche Leistungsdichtespektrum&nbsp; (im Bandpassbereich):
 +
:$${{\it \Phi}_s(f)} = {A}/{4} \cdot {\big [ {\rm si}^2(\pi \cdot T_{\rm B}\cdot (f - f_{\rm T})) + {\rm si}^2(\pi \cdot T_{\rm B}\cdot (f + f_{\rm T}))\big ]}\hspace{0.05cm}.$$
 +
In der oberen Grafik ist allerdings das Leistungsdichtespektrum &nbsp;${{\it \Phi}_{s, \hspace{0.05cm}\rm TP}(f)}$&nbsp; des äquivalenten Tiefpass–Signals dargestellt.&nbsp; Dieses ergibt sich aus &nbsp;${\it Φ}_s(f)$&nbsp; durch
 +
*Abschneiden aller Anteile bei negativen Frequenzen,
 +
*Vervierfachen der Anteile bei positiven Frequenzen&nbsp; (weil: &nbsp; ein Spektrum muss verdoppelt werden,&nbsp; ein LDS vervierfacht),
 +
*Verschieben um &nbsp;$f_{\rm T}$&nbsp; nach links:
 +
:$${{\it \Phi}_{s, \hspace{0.05cm}\rm TP}(f)} = A \cdot {\rm si}^2(\pi f T_{\rm B}). \hspace{0.2cm}$$
  
In [http://www.lntwww.de/Aufgaben:4.6_Spektren_von_ASK_und_BPSK Aufgabe A4.6] wurde das Leistungdichtespektrum $Φ-s(f)$ der BPSK für genau diese Parameterwerte ermittelt. Mit
 
$$A = s_0^2 \cdot T_{\rm B} = 4 \cdot 10^{-6}\,{\rm V^2/Hz}$$
 
erhält man für das tatsächliche LDS (im Bandpassbereich):
 
$${{\it \Phi}_s(f)} = \frac{A}{4} \cdot {\left [ {\rm si}^2(\pi \cdot T_{\rm B}\cdot (f - f_{\rm T})) + {\rm si}^2(\pi \cdot T_{\rm B}\cdot (f + f_{\rm T}))\right ]}\hspace{0.05cm}.$$
 
In der oberen Grafik ist allerdings das LDS des äquivalenten TP–Signals dargestellt. Dieses ergibt sich aus $Φ_s(f)$ durch Abschneiden aller Anteile bei negativen Frequenzen, Vervierfachen der Anteile bei positiven Frequenzen (beachten Sie: ein Spektrum muss verdoppelt werden, ein Leistungsdichtespektrum vervierfacht) und Verschieben um $f_T$ nach links:
 
$${{\it \Phi}_{s, \hspace{0.05cm}\rm TP}(f)} = A \cdot {\rm si}^2(\pi f T_{\rm B}). \hspace{0.2cm}$$
 
 
Die 4–QAM unterscheidet sich von der BPSK in folgenden Details:
 
Die 4–QAM unterscheidet sich von der BPSK in folgenden Details:
:* Aufspaltung des binären Quellensignals in zwei Teilsignale mit jeweils halber Bitrate, das heißt mit der Symboldauer $T = 2 · T_B$.
+
* Aufspaltung des binären Quellensignals in zwei Teilsignale mit jeweils halber Bitrate,&nbsp; das heißt mit der Symboldauer &nbsp;$T = 2 · T_{\rm B}$.
:* Multiplikation der Teilsignale mit Cosinus und Minus–Sinus, deren Amplituden $g_0$ jeweils um den Faktor „Wurzel aus 2” kleiner sind als $s_0$. Die Signale werden mit $s_{cos}(t)$ und $s_{–sin}(t)$ bezeichnet.
+
* Multiplikation der Teilsignale mit Cosinus und Minus–Sinus,&nbsp; deren Amplituden &nbsp;$g_0$&nbsp; jeweils um den Faktor &nbsp;$\sqrt{2}$&nbsp; kleiner sind als &nbsp;$s_0$.  
:* Summation der beiden Teilsignale:
+
* Summation der beiden Teilsignale,&nbsp; die mit &nbsp;$s_{\cos}(t)$&nbsp; und &nbsp;$s_{–\sin}(t)$&nbsp; bezeichnet werden:
$$s(t) = s_{\rm cos}(t)+ s_{\rm -sin}(t) \hspace{0.05cm}.$$
+
:$$s(t) = s_{\rm cos}(t)+ s_{\rm -sin}(t) \hspace{0.05cm}.$$
'''Hinwies:''' Die Aufgabe bezieht sich auf [http://www.lntwww.de/Modulationsverfahren/Lineare_digitale_Modulationsverfahren Kapitel 4.2] (BPSK) und [http://www.lntwww.de/Modulationsverfahren/Quadratur%E2%80%93Amplitudenmodulation Kapitel 4.3] (QAM) dieses Buches.
+
 
 +
 
 +
 
 +
 
 +
 
 +
Hinweise:  
 +
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Modulationsverfahren/Quadratur%E2%80%93Amplitudenmodulation|"Quadratur&ndash;Amplitudenmodulation"]].
 +
*Bezug genommen wird aber auch auf die Seite&nbsp; [[Modulationsverfahren/Lineare_digitale_Modulation#BPSK_.E2.80.93_Binary_Phase_Shift_Keying|"BPSK &ndash; Binary Phase Shift Keying"]]&nbsp; im vorherigen Kapitel.
 +
* Das Leistungsdichtespektrum (LDS) einer QAM-Komponente ist identisch mit dem vergleichbaren BPSK&ndash;LDS. 
 +
*Energien sind in  &nbsp;$\rm V^2s$&nbsp; anzugeben; sie beziehen sich somit auf den Bezugswiderstand &nbsp;$R = 1 \ \rm \Omega$.
 +
 +
 
 +
 
 
===Fragebogen===
 
===Fragebogen===
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie groß ist die Energie pro Bit bei der BPSK?
+
{Wie groß ist die Energie pro Bit &nbsp; &rArr; &nbsp; $E_{\rm B}$&nbsp; bei &nbsp;"Binary Phase Shift Keying"&nbsp; (BPSK)?
 
|type="{}"}
 
|type="{}"}
$BPSK:  E_B$ = { 2 3% } $10^{-6}$ $V^2/Hz$
+
$E_{\rm B} \ = \ $ { 2 3% } $\ \cdot 10^{-6}\ \rm V^2/Hz$
  
{Wie lautet das Leistungsdichtespektrum des 4–QAM–Teilsignals $s_{cos}(t)$ in der äquivalenten Tiefpassdarstellung? Welcher Wert ergibt sich bei f = 0?
+
{Wie lautet das Leistungsdichtespektrum &nbsp;${\it \Phi}_{s,\hspace{0.08cm} \cos, \hspace{0.08cm}{\rm TP}}(f )$&nbsp; des 4–QAM–Teilsignals&nbsp; $s_{\cos}(t)$&nbsp; in der äquivalenten Tiefpassdarstellung? <br>Welcher Wert &nbsp;$B_0 = {\it \Phi}_{s, \hspace{0.08cm}\cos, \hspace{0.08cm}{\rm TP}}(f = 0) $&nbsp; ergibt sich bei der Frequenz  &nbsp;$f = 0$?
 
|type="{}"}
 
|type="{}"}
$4–QAM:  A = Φ_{s, cos, TP}(f = 0)$ = { 4 3% } $10^{-6}$ $V^2/Hz$
+
$B_0 \ = \ $ { 4 3% } $\ \cdot 10^{-6}\ \rm V^2/Hz$
  
{Wie lautet das Leistungsdichtespektrum des gesamten 4–QAM–Signals $s(t)$? Welcher Wert B ergibt sich hier bei der Frequenz f = 0?
+
{Wie lautet das Leistungsdichtespektrum &nbsp;${\it \Phi}_{s,\hspace{0.08cm}{\rm TP}}(f )$&nbsp; des gesamten 4–QAM–Signals $s(t)$?  
 +
<br>Welcher Wert &nbsp;$Q_0 = {\it \Phi}_{s, \hspace{0.08cm}{\rm TP}}(f = 0) $&nbsp; ergibt sich hier bei der Frequenz &nbsp;$f = 0$?
 
|type="{}"}
 
|type="{}"}
$ 4–QAM:  B = Φ_{s, TP}(f = 0)$ = { 8 3% } $10^{-6}$ $V^2/Hz$
+
$Q_0 \ = \ $ { 8 3% } $\ \cdot 10^{-6}\ \rm V^2/Hz$
  
{Wie groß ist die Energie pro Bit bei der 4–QAM?
+
{Wie groß ist die Energie pro Bit &nbsp; &rArr; &nbsp; $E_{\rm B}$&nbsp; bei der &nbsp;"Quadratur&ndash;Amplitudenmodulation"&nbsp; (4–QAM)?
 
|type="{}"}
 
|type="{}"}
$4–QAM:  E_B$ = { 2 3% } $10^{-6}$ $V^2/Hz$
+
$E_{\rm B} \ = \ $ { 2 3% } $\ \cdot 10^{-6}\ \rm V^2/Hz$
  
  
Zeile 43: Zeile 60:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.''' Die Leistung des BPSK–Sendesignals ist gleich dem Intergral über das Leistungsdichtespektrum. Integriert man über das äquivalente Tiefpass–LDS, so ist noch der Faktor 1/2 zu berücksichtigen:
+
'''(1)'''&nbsp; Die Leistung des BPSK–Sendesignals ist gleich dem Intergral über das Leistungsdichtespektrum.  
$$P_{\rm BPSK}  =  \int_{ - \infty }^{+\infty} {{\it \Phi}_{s}(f)}\hspace{0.1cm} {\rm d}f = \frac{1}{2} \cdot \int_{ - \infty }^{+\infty} {{\it \Phi}_{s, \hspace{0.05cm}\rm TP}(f)}\hspace{0.1cm} {\rm d}f = \frac{A}{2} \cdot \int_{ - \infty }^{+\infty} {\rm si}^2(\pi f T_{\rm B})\hspace{0.1cm} {\rm d}f =$$
+
*Integriert man über das äquivalente Tiefpass–LDS, so ist noch der Faktor&nbsp; $1/2$&nbsp; zu berücksichtigen:
$$ =  \frac{A}{2T_{\rm B}} \cdot \int_{ - \infty }^{+\infty} {\rm si}^2(\pi x)\hspace{0.1cm} {\rm d}x =\frac{A}{2T_{\rm B}}$$
+
:$$P_{\rm BPSK}  =  \int_{ - \infty }^{+\infty} {{\it \Phi}_{s}(f)}\hspace{0.1cm} {\rm d}f = \frac{1}{2} \cdot \int_{ - \infty }^{+\infty} {{\it \Phi}_{s, \hspace{0.05cm}\rm TP}(f)}\hspace{0.1cm} {\rm d}f = \frac{A}{2} \cdot \int_{ - \infty }^{+\infty} {\rm si}^2(\pi f T_{\rm B})\hspace{0.1cm} {\rm d}f =  \frac{A}{2T_{\rm B}} \cdot \int_{ - \infty }^{+\infty} {\rm si}^2(\pi x)\hspace{0.1cm} {\rm d}x =\frac{A}{2T_{\rm B}}$$
$$A = 4 \cdot 10^{-6}\,{\rm V^2/Hz}\hspace{0.05cm}, \hspace{0.2cm} T_{\rm B}= 10^{-6}\,{\rm s} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_{\rm BPSK} = 2\,{\rm V^2} ( = {s_0^2 }/{2})\hspace{0.05cm}.$$
+
:$$\text{Mit} \ \ A = 4 \cdot 10^{-6}\,{\rm V^2/Hz}\hspace{0.05cm}, \hspace{0.2cm} T_{\rm B}= 10^{-6}\,{\rm s} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_{\rm BPSK} = 2\,{\rm V^2} ( = {s_0^2 }/{2})\hspace{0.05cm}.$$
Die Energie pro Bit ist dementsprechend
+
*Die Energie pro Bit ist dementsprechend bei der BPSK:
$$E_{\rm B} = {P_{\rm BPSK} \cdot T_{\rm B}}\hspace{0.15cm}\underline {= 2 \cdot 10^{-6}\,{\rm V^2/Hz}}\hspace{0.05cm}.$$
+
:$$E_{\rm B} = {P_{\rm BPSK} \cdot T_{\rm B}}\hspace{0.15cm}\underline {= 2 \cdot 10^{-6}\,{\rm V^2/Hz}}\hspace{0.05cm}.$$
Hierbei ist wieder der Bezugswiderstand zugrunde gelegt.
+
*Hierbei ist wieder der Bezugswiderstand $1\ \rm Ω$ zugrunde gelegt.
 +
 
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; Aufgrund der doppelten Symboldauer der 4–QAM&nbsp; $(T = 2 · T_{\rm B})$&nbsp; ist die Spektralfunktion gegenüber der BPSK nur halb so breit, aber doppelt so hoch, und anstelle von&nbsp; $s_0$&nbsp; ist nun der kleinere Wert&nbsp; $g_0$&nbsp; zu berücksichtigen.
 +
*Der LDS–Wert bei der Frequenz&nbsp; $f = 0$&nbsp; lautet damit:
 +
:$${\it \Phi}_{s, \hspace{0.05cm}\rm cos,\hspace{0.05cm}\rm TP}(f = 0 ) = \left ({s_0}/{\sqrt{2}} \right )^2 \cdot 2 \cdot T_{\rm B} ={s_0^2 \cdot T_{\rm B}} = B_0 \hspace{0.05cm}.$$
 +
*Es ergibt sich somit genau der gleiche Wert wie bei der BPSK:
 +
:$$B_0 = {\it \Phi}_{s, \hspace{0.05cm}\rm cos,\hspace{0.05cm}\rm TP}(f = 0 ) \hspace{0.15cm}\underline {= 4 \cdot 10^{-6}\,{\rm V^2/Hz}}$$
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; Das zweite Teilsignal&nbsp; $s_{–\sin}(t)$&nbsp; liefert den genau gleichen Beitrag wie das gerade betrachtete Signal&nbsp; $s_{\cos}(t)$.
 +
*Aufgrund der Orthogonalität zwischen der Cosinus– und der Minus–Sinusfunktion können die Leistungen addiert werden und man erhält:
 +
:$$Q_0 = {\it \Phi}_{s, \hspace{0.05cm}\rm TP}(f = 0 ) = 2 \cdot B_0 \hspace{0.15cm}\underline {= 8 \cdot 10^{-6}\,{\rm V^2/Hz}}\hspace{0.05cm}.$$
  
'''2.'''  Aufgrund der doppelten Symboldauer der 4–QAM ($T = 2 · T_B$) ist die Spektralfunktion gegenüber der BPSK nur halb so breit, aber doppelt so hoch, und anstelle von $s_0$ ist nun der kleinere Wert g0 zu berücksichtigen. Der LDS–Wert bei der Frequenz f = 0 lautet damit:
 
$${\it \Phi}_{s, \hspace{0.05cm}\rm cos,\hspace{0.05cm}\rm TP}(f = 0 ) = \left ({s_0}/{\sqrt{2}} \right )^2 \cdot 2 \cdot T_{\rm B} ={s_0^2 \cdot T_{\rm B}} = A \hspace{0.05cm}.$$
 
Es ergibt sich somit genau der gleiche Wert
 
$$A = {\it \Phi}_{s, \hspace{0.05cm}\rm cos,\hspace{0.05cm}\rm TP}(f = 0 ) \hspace{0.15cm}\underline {= 4 \cdot 10^{-6}\,{\rm V^2/Hz}}$$
 
wie bei der BPSK.
 
  
'''3.''' Das zweite Teilsignal $s_{–sin}(t)$ liefert den genau gleichen Beitrag A wie das gerade betrachtete Signal $s_{cos}(t)$. Aufgrund der Orthogonalität zwischen der Cosinus– und der Minus–Sinusfunktion können die Leistungen addiert werden und man erhält:
 
$$B = {\it \Phi}_{s, \hspace{0.05cm}\rm TP}(f = 0 ) = 2 \cdot A \hspace{0.15cm}\underline {= 8 \cdot 10^{-6}\,{\rm V^2/Hz}}\hspace{0.05cm}.$$
 
  
'''4.''' Analog zur Teilaufgabe a) erhält man für die Energie pro Bit:
+
'''(4)'''&nbsp; Analog zur Teilaufgabe&nbsp; '''(1)'''&nbsp; erhält man für die Energie pro Bit:
$$E_{\rm B}  =  \frac{1}{2} \cdot T_{\rm B} \cdot \int_{ - \infty }^{+\infty} {{\it \Phi}_{s, \hspace{0.05cm}\rm TP}(f)}\hspace{0.1cm} {\rm d}f = \frac{B \cdot T_{\rm B}}{2T} \cdot \int_{ - \infty }^{+\infty} {\rm si}^2(\pi f T_{\rm B})\hspace{0.1cm} {\rm d}f =$$ 
+
:$$E_{\rm B}  =  \frac{1}{2} \cdot T_{\rm B} \cdot \int_{ - \infty }^{+\infty} {{\it \Phi}_{s, \hspace{0.05cm}\rm TP}(f)}\hspace{0.1cm} {\rm d}f = \frac{Q_0 \cdot T_{\rm B}}{2T} \cdot \int_{ - \infty }^{+\infty} {\rm si}^2(\pi f T_{\rm B})\hspace{0.1cm} {\rm d}f =  
$$ = \frac{B \cdot T_{\rm B}}{2T} = \frac{8 \cdot 10^{-6}\,{\rm V^2/Hz} \cdot 1\,{\rm \mu s}}{ 2 \cdot 2\,{\rm \mu s}}\hspace{0.15cm}\underline {= 2 \cdot 10^{-6}\,{\rm V^2/Hz}}\hspace{0.05cm}.$$
+
  \frac{Q_0 \cdot T_{\rm B}}{2T} = \frac{8 \cdot 10^{-6}\,{\rm V^2/Hz} \cdot 1\,{\rm \mu s}}{ 2 \cdot 2\,{\rm \mu s}}\hspace{0.15cm}\underline {= 2 \cdot 10^{-6}\,{\rm V^2/Hz}}\hspace{0.05cm}.$$
Man erkennt, dass bei den hier getroffenen Voraussetzungen die „Energie pro Bit” bei der BPSK und der 4–QAM übereinstimmen.
+
*Man erkennt, dass bei den hier getroffenen Voraussetzungen die „Energie pro Bit” von BPSK und 4–QAM übereinstimmen.
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Aktuelle Version vom 18. April 2022, 07:14 Uhr

Leistungsdichtespektren von
BPSK und 4-QAM

Ausgehend von der  BPSK  (binäre Phasenmodulation)  mit rechteckförmigem Grundimpuls  $g_s(t)$  der Breite  $T_{\rm B} = 1 \ \rm µ s$  und der Amplitude  $s_0 = 2 \ \rm V$  soll das Leistungsdichtespektrum  $\rm (LDS)$  der  4–QAM  schrittweise ermittelt werden.

In der   Aufgabe 4.7  wurde das Leistungdichtespektrum  ${\it Φ}_s(f)$  der BPSK für genau diese Parameterwerte ermittelt.  Mit

$$A = s_0^2 \cdot T_{\rm B} = 4 \cdot 10^{-6}\,{\rm V^2/Hz}$$

erhält man für das tatsächliche Leistungsdichtespektrum  (im Bandpassbereich):

$${{\it \Phi}_s(f)} = {A}/{4} \cdot {\big [ {\rm si}^2(\pi \cdot T_{\rm B}\cdot (f - f_{\rm T})) + {\rm si}^2(\pi \cdot T_{\rm B}\cdot (f + f_{\rm T}))\big ]}\hspace{0.05cm}.$$

In der oberen Grafik ist allerdings das Leistungsdichtespektrum  ${{\it \Phi}_{s, \hspace{0.05cm}\rm TP}(f)}$  des äquivalenten Tiefpass–Signals dargestellt.  Dieses ergibt sich aus  ${\it Φ}_s(f)$  durch

  • Abschneiden aller Anteile bei negativen Frequenzen,
  • Vervierfachen der Anteile bei positiven Frequenzen  (weil:   ein Spektrum muss verdoppelt werden,  ein LDS vervierfacht),
  • Verschieben um  $f_{\rm T}$  nach links:
$${{\it \Phi}_{s, \hspace{0.05cm}\rm TP}(f)} = A \cdot {\rm si}^2(\pi f T_{\rm B}). \hspace{0.2cm}$$

Die 4–QAM unterscheidet sich von der BPSK in folgenden Details:

  • Aufspaltung des binären Quellensignals in zwei Teilsignale mit jeweils halber Bitrate,  das heißt mit der Symboldauer  $T = 2 · T_{\rm B}$.
  • Multiplikation der Teilsignale mit Cosinus und Minus–Sinus,  deren Amplituden  $g_0$  jeweils um den Faktor  $\sqrt{2}$  kleiner sind als  $s_0$.
  • Summation der beiden Teilsignale,  die mit  $s_{\cos}(t)$  und  $s_{–\sin}(t)$  bezeichnet werden:
$$s(t) = s_{\rm cos}(t)+ s_{\rm -sin}(t) \hspace{0.05cm}.$$



Hinweise:

  • Die Aufgabe gehört zum Kapitel  "Quadratur–Amplitudenmodulation".
  • Bezug genommen wird aber auch auf die Seite  "BPSK – Binary Phase Shift Keying"  im vorherigen Kapitel.
  • Das Leistungsdichtespektrum (LDS) einer QAM-Komponente ist identisch mit dem vergleichbaren BPSK–LDS.
  • Energien sind in  $\rm V^2s$  anzugeben; sie beziehen sich somit auf den Bezugswiderstand  $R = 1 \ \rm \Omega$.


Fragebogen

1

Wie groß ist die Energie pro Bit   ⇒   $E_{\rm B}$  bei  "Binary Phase Shift Keying"  (BPSK)?

$E_{\rm B} \ = \ $

$\ \cdot 10^{-6}\ \rm V^2/Hz$

2

Wie lautet das Leistungsdichtespektrum  ${\it \Phi}_{s,\hspace{0.08cm} \cos, \hspace{0.08cm}{\rm TP}}(f )$  des 4–QAM–Teilsignals  $s_{\cos}(t)$  in der äquivalenten Tiefpassdarstellung?
Welcher Wert  $B_0 = {\it \Phi}_{s, \hspace{0.08cm}\cos, \hspace{0.08cm}{\rm TP}}(f = 0) $  ergibt sich bei der Frequenz  $f = 0$?

$B_0 \ = \ $

$\ \cdot 10^{-6}\ \rm V^2/Hz$

3

Wie lautet das Leistungsdichtespektrum  ${\it \Phi}_{s,\hspace{0.08cm}{\rm TP}}(f )$  des gesamten 4–QAM–Signals $s(t)$?
Welcher Wert  $Q_0 = {\it \Phi}_{s, \hspace{0.08cm}{\rm TP}}(f = 0) $  ergibt sich hier bei der Frequenz  $f = 0$?

$Q_0 \ = \ $

$\ \cdot 10^{-6}\ \rm V^2/Hz$

4

Wie groß ist die Energie pro Bit   ⇒   $E_{\rm B}$  bei der  "Quadratur–Amplitudenmodulation"  (4–QAM)?

$E_{\rm B} \ = \ $

$\ \cdot 10^{-6}\ \rm V^2/Hz$


Musterlösung

(1)  Die Leistung des BPSK–Sendesignals ist gleich dem Intergral über das Leistungsdichtespektrum.

  • Integriert man über das äquivalente Tiefpass–LDS, so ist noch der Faktor  $1/2$  zu berücksichtigen:
$$P_{\rm BPSK} = \int_{ - \infty }^{+\infty} {{\it \Phi}_{s}(f)}\hspace{0.1cm} {\rm d}f = \frac{1}{2} \cdot \int_{ - \infty }^{+\infty} {{\it \Phi}_{s, \hspace{0.05cm}\rm TP}(f)}\hspace{0.1cm} {\rm d}f = \frac{A}{2} \cdot \int_{ - \infty }^{+\infty} {\rm si}^2(\pi f T_{\rm B})\hspace{0.1cm} {\rm d}f = \frac{A}{2T_{\rm B}} \cdot \int_{ - \infty }^{+\infty} {\rm si}^2(\pi x)\hspace{0.1cm} {\rm d}x =\frac{A}{2T_{\rm B}}$$
$$\text{Mit} \ \ A = 4 \cdot 10^{-6}\,{\rm V^2/Hz}\hspace{0.05cm}, \hspace{0.2cm} T_{\rm B}= 10^{-6}\,{\rm s} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_{\rm BPSK} = 2\,{\rm V^2} ( = {s_0^2 }/{2})\hspace{0.05cm}.$$
  • Die Energie pro Bit ist dementsprechend bei der BPSK:
$$E_{\rm B} = {P_{\rm BPSK} \cdot T_{\rm B}}\hspace{0.15cm}\underline {= 2 \cdot 10^{-6}\,{\rm V^2/Hz}}\hspace{0.05cm}.$$
  • Hierbei ist wieder der Bezugswiderstand $1\ \rm Ω$ zugrunde gelegt.



(2)  Aufgrund der doppelten Symboldauer der 4–QAM  $(T = 2 · T_{\rm B})$  ist die Spektralfunktion gegenüber der BPSK nur halb so breit, aber doppelt so hoch, und anstelle von  $s_0$  ist nun der kleinere Wert  $g_0$  zu berücksichtigen.

  • Der LDS–Wert bei der Frequenz  $f = 0$  lautet damit:
$${\it \Phi}_{s, \hspace{0.05cm}\rm cos,\hspace{0.05cm}\rm TP}(f = 0 ) = \left ({s_0}/{\sqrt{2}} \right )^2 \cdot 2 \cdot T_{\rm B} ={s_0^2 \cdot T_{\rm B}} = B_0 \hspace{0.05cm}.$$
  • Es ergibt sich somit genau der gleiche Wert wie bei der BPSK:
$$B_0 = {\it \Phi}_{s, \hspace{0.05cm}\rm cos,\hspace{0.05cm}\rm TP}(f = 0 ) \hspace{0.15cm}\underline {= 4 \cdot 10^{-6}\,{\rm V^2/Hz}}$$


(3)  Das zweite Teilsignal  $s_{–\sin}(t)$  liefert den genau gleichen Beitrag wie das gerade betrachtete Signal  $s_{\cos}(t)$.

  • Aufgrund der Orthogonalität zwischen der Cosinus– und der Minus–Sinusfunktion können die Leistungen addiert werden und man erhält:
$$Q_0 = {\it \Phi}_{s, \hspace{0.05cm}\rm TP}(f = 0 ) = 2 \cdot B_0 \hspace{0.15cm}\underline {= 8 \cdot 10^{-6}\,{\rm V^2/Hz}}\hspace{0.05cm}.$$


(4)  Analog zur Teilaufgabe  (1)  erhält man für die Energie pro Bit:

$$E_{\rm B} = \frac{1}{2} \cdot T_{\rm B} \cdot \int_{ - \infty }^{+\infty} {{\it \Phi}_{s, \hspace{0.05cm}\rm TP}(f)}\hspace{0.1cm} {\rm d}f = \frac{Q_0 \cdot T_{\rm B}}{2T} \cdot \int_{ - \infty }^{+\infty} {\rm si}^2(\pi f T_{\rm B})\hspace{0.1cm} {\rm d}f = \frac{Q_0 \cdot T_{\rm B}}{2T} = \frac{8 \cdot 10^{-6}\,{\rm V^2/Hz} \cdot 1\,{\rm \mu s}}{ 2 \cdot 2\,{\rm \mu s}}\hspace{0.15cm}\underline {= 2 \cdot 10^{-6}\,{\rm V^2/Hz}}\hspace{0.05cm}.$$
  • Man erkennt, dass bei den hier getroffenen Voraussetzungen die „Energie pro Bit” von BPSK und 4–QAM übereinstimmen.