Aufgabe 4.11: Analyse von Prüfmatrizen

Aus LNTwww
Wechseln zu:Navigation, Suche

Produktcode und dessen Beschreibung durch die Prüfmatrix

In nebenstehender Grafik ist oben ein Produktcode angegeben, der durch folgende Prüfgleichungen gekennzeichnet ist:

$$p_1 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_1 \oplus u_2\hspace{0.05cm},\hspace{0.3cm} p_2 = u_3 \oplus u_4\hspace{0.05cm},$$
$$p_3 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_1 \oplus u_3\hspace{0.05cm},\hspace{0.3cm} p_4 = u_2 \oplus u_4\hspace{0.05cm}.$$

Darunter sind die Prüfmatrizen $\mathbf{H}_1, \ \mathbf{H}_2$ und $\mathbf{H}_3$ angegeben. Zu prüfen ist, welche der Matrizen den gegebenen Produktcode entsprechend der Gleichung $\underline{x} = \underline{u} \cdot \mathbf{H}^{\rm T}$ richtig beschreiben, wenn von folgenden Definitionen ausgegangen wird:

  • dem Codewort $\underline{x} = (u_1, \, u_2, \, u_3, \, u_4, \, p_1, \, p_2, \, p_3, \, p_4)$,
  • dem Codewort $\underline{x} = (u_1, \, p_1, \, u_2, \, p_2, \, u_3, \, p_3, \, u_4, \, p_4)$.


Alle $\mathbf{H}$–Matrizen beinhalten weniger Einsen als Nullen. Dies ist ein Kennzeichen der so genannten Low–density Parity–check Codes (kurz: LDPC–Codes). Bei den praxisrelevanten LDPC–Codes ist der Einsen–Anteil allerdings noch geringer als bei diesen Beispielen.

Weiterhin ist für die Aufgabe anzumerken:

  • Ein $(n, \ k)$–Blockcode ist systematisch, wenn die ersten $k \ \rm Bit$ des Codewortes das Informationswort $\underline{u}$ beinhaltet. Mit der Codewortdefinition $\underline{x} = (u_1, \, u_2, \, u_3, \, u_4, \, p_1, \, p_2, \, p_3, \, p_4)$ muss dann die Prüfmatrix $\mathbf{H}$ mit einer $k × k$–Diagonalmatrix enden.
  • Ein regulärer Code (hinsichtlich LDPC–Anwendung) liegt vor, wenn das Hamming–Gewicht aller Zeilen  ⇒  $w_{\rm Z}$ und das Hamming–Gewicht aller Spalten  ⇒  $w_{\rm S}$ jeweils gleich ist. Andernfalls spricht man von einem irregulären LDPC–Code.
  • Die Prüfmatrix $\mathbf{H}$ eines herkömmlichen linearen $(n, \ k)$–Blockcodes besteht aus exakt $m = n - k$ Zeilen und $n$ Spalten. Bei den LDPC–Codes lautet dagegen die Forderung: $m ≥ n - k$. Das Gleichheitszeichen trifft dann zu, wenn die $m$ Prüfgleichungen statistisch unabhängig sind.
  • Aus der Prüfmatrix $\mathbf{H}$ lässt sich eine untere Schranke für die Coderate $R$ angeben:
$$R \ge 1 - \frac{{\rm E}[w_{\rm S}]}{{\rm E}[w_{\rm Z}]} \hspace{0.5cm}{\rm mit}\hspace{0.5cm} {\rm E}[w_{\rm S}] =\frac{1}{n} \cdot \sum_{i = 1}^{n}w_{\rm S}(i) \hspace{0.5cm}{\rm und}\hspace{0.5cm} {\rm E}[w_{\rm Z}] =\frac{1}{m} \cdot \sum_{j = 1}^{ m}w_{\rm Z}(j) \hspace{0.05cm}.$$
  1. Diese Gleichung gilt für reguläre und irreguläre LDPC–Codes gleichermaßen, wobei den regulären Codes ${\rm E}[w_{\rm S}] = w_{\rm S}$ und ${\rm E}[w_{\rm Z}] = w_{\rm Z}$ berücksichtigt werden kann.


Hinweis:


Fragebogen

1

Multiple-Choice

correct
false

2

Input-Box Frage

$xyz \ = \ $

$ab$


Musterlösung

(1)  (2)  (3)  (4)  (5)