Aufgaben:Aufgabe 4.10Z: Signalraumkonstellation der 16–QAM: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 40: Zeile 40:
 
|type="{}"}
 
|type="{}"}
 
$|a| \ = \ $ { 1.054 3% }  
 
$|a| \ = \ $ { 1.054 3% }  
${\rm arc} \ a \ = \ $ { 161.57 3% } $\ \rm Grad$
+
${\rm arc} \ a \ = \ $ { -166.57--156.57 } $\ \rm Grad$
  
 
{Geben Sie den Betrag und die Phase für das violette Symbol an   ⇒   $a = -1 +{\rm j}/3$.
 
{Geben Sie den Betrag und die Phase für das violette Symbol an   ⇒   $a = -1 +{\rm j}/3$.
 
|type="{}"}
 
|type="{}"}
 
$|a| \ = \ $ { 1.054 3% }  
 
$|a| \ = \ $ { 1.054 3% }  
${\rm arc} \ a \ = \ ${ 161.57 3% } $\ \rm Grad$
+
${\rm arc} \ a \ = \ ${ -166.57--156.57 } $\ \rm Grad$
  
 
{Wieviele unterschiedliche Beträge   ⇒   $N_{|a|}$ und Phasenlagen   ⇒   $N_{arc}$ sind möglich?
 
{Wieviele unterschiedliche Beträge   ⇒   $N_{|a|}$ und Phasenlagen   ⇒   $N_{arc}$ sind möglich?

Version vom 26. Juli 2017, 12:18 Uhr

Signalraumkonstellation

Wir betrachten weiter das 16–QAM–Verfahren entsprechend dem im Theorieteil angegebenen Blockschaltbild. Die Grafik zeigt die möglichen komplexen Amplitudenkoeffizienten $a = a_{\rm I} + {\rm j} · a_{\rm Q}$.

Für diese Aufgabe soll ebenso wie für die Aufgabe 4.10 vorausgesetzt werden:

  • Die möglichen Amplitudenkoeffizienten $a_{\rm I}$ und $a_{\rm Q}$ der beiden Komponentensignale sind $ ±1$ und $±1/3$.
  • Der Sendegrundimpuls $g_s(t)$ ist rechteckförmig mit Amplitude $g_0 = 1\ \rm V$ und Dauer $T = 1 \ \rm μs$.
  • Das Quellensignal $q(t)$ vor dem Seriell–Parallel–Wandler ist binär und redundanzfrei.


Hinweise:


Fragebogen

1

Wie groß ist die Bitrate $R_{\rm B}$ des binären Quellensymbols $q(t)$?

$R_{\rm B}\ = \ $

$\ \rm Mbit/s$

2

Geben Sie den Betrag und die Phase (zwischen ±180°) für das rote Symbol an   ⇒   $a = 1 +{\rm j}$.

$|a| \ = \ $

${\rm arc} \ a \ = \ $

$\ \rm Grad$

3

Geben Sie den Betrag und die Phase für das blaue Symbol an   ⇒   $a = 1/3 +{\rm j}/3$.

$|a| \ = \ $

${\rm arc} \ a \ = \ $

$\ \rm Grad$

4

Geben Sie den Betrag und die Phase für das grüne Symbol an   ⇒   $a = -1 +{\rm j}/3$.

$|a| \ = \ $

${\rm arc} \ a \ = \ $

$\ \rm Grad$

5

Geben Sie den Betrag und die Phase für das violette Symbol an   ⇒   $a = -1 +{\rm j}/3$.

$|a| \ = \ $

${\rm arc} \ a \ = \ $

$\ \rm Grad$

6

Wieviele unterschiedliche Beträge   ⇒   $N_{|a|}$ und Phasenlagen   ⇒   $N_{arc}$ sind möglich?

$N_{|a|}\ = \ $

$N_{\rm arc}\ = \ $


Musterlösung

1. Durch ein Symbol werden jeweils $ld 16 = 4 Bit$ des Quellensignals dargestellt, zwei durch den vierstufigen Koeffizienten $a_I$ und zwei weitere durch $a_Q$. Die Bitdauer beträgt somit $T_B = T/4 = 0.25 μs$. Damit ist die Bitrate $R_B = 1/T_B = 4 Mbit/s$.

2. Aus der Geometrie folgt für $a = 1 + j$: $$a| = \sqrt{1^2 + 1^2}= \sqrt{2}\hspace{0.15cm}\underline { =1.414}\hspace{0.05cm}, \hspace{0.2cm} {\rm arc}\hspace{0.15cm} a = \arctan \left (\frac {1}{1} \right ) \hspace{0.15cm}\underline {= 45^{\circ}}\hspace{0.05cm}.$$ 3. Der Winkel ergibt sich wie bei der Aufgabe b), der Betrag ist um den Faktor 3 kleiner: |a| = 0.471.

4. Für den komplexen Amplitudenkoeffizienten a = –1 + j/3 erhält man aus der Geometrie: $$|a| = \sqrt{1^2 + (1/3)^2}\hspace{0.15cm}\underline {= 1.054}\hspace{0.05cm},$$ $$ {\rm arc}\hspace{0.15cm} a = 180^{\circ} - \arctan \left (\frac {1}{3} \right ) = 180^{\circ} - 18.43^{\circ} \hspace{0.15cm}\underline {= 161.57^{\circ}}\hspace{0.05cm}.$$ 5. Das violette Symbol hat den gleichen Betrag 1.054 wie das grüne Symbol nach Teilaufgabe c), während der Phasenwinkel das Vorzeichen ändert: arc a = –161.57°.

6. Für den Betrag sind $N_{|a|} = 3$ verschiedene Ergebnisse möglich: 1.414, 1.054 und 0.471. Dagegen gibt es $N_{arc} = 12$ mögliche Phasenlagen: $$ \pm \arctan (1/3) = \pm 18.43^{\circ}, \hspace{0.2cm}\pm \arctan (1) = \pm 45^{\circ}, \hspace{0.2cm}\pm \arctan (3) = \pm 71.57^{\circ}\hspace{0.05cm},$$ $$\pm (180^{\circ}-71.57^{\circ}) = \pm 108.43^{\circ}, \hspace{0.2cm}\pm (180^{\circ}-45^{\circ}) = \pm 135^{\circ}, \hspace{0.2cm}\pm 161.57^{\circ} \hspace{0.05cm}.$$