Aufgaben:Aufgabe 4.10Z: Korrelationsdauer: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
K (Guenter verschob die Seite 4.10Z Korrelationsdauer nach Aufgabe 4.10Z: Korrelationsdauer)
K (Textersetzung - „\*\s*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0\.” ein.“ durch „ “)
Zeile 21: Zeile 21:
 
*Die Aufgabe gehört zum  Kapitel [[Stochastische_Signaltheorie/Autokorrelationsfunktion_(AKF)|Autokorrelationsfunktion]].
 
*Die Aufgabe gehört zum  Kapitel [[Stochastische_Signaltheorie/Autokorrelationsfunktion_(AKF)|Autokorrelationsfunktion]].
 
*Bezug genommen wird insbesondere auf die Seite [[Stochastische_Signaltheorie/Autokorrelationsfunktion_(AKF)#Interpretation_der_Autokorrelationsfunktion|Interpretation der Autokorrelationsfunktion]].
 
*Bezug genommen wird insbesondere auf die Seite [[Stochastische_Signaltheorie/Autokorrelationsfunktion_(AKF)#Interpretation_der_Autokorrelationsfunktion|Interpretation der Autokorrelationsfunktion]].
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
+
  
  

Version vom 29. Mai 2018, 14:03 Uhr

Musterfunktionen ergodischer Prozesse

Das nebenstehende Bild zeigt Mustersignale zweier Zufallsprozesse $\{x_i(t)\}$ und $\{y_i(t)\}$ mit jeweils gleicher Leistung $P_x = P_y = 5\hspace{0.05 cm} \rm mW$. Vorausgesetzt ist hierbei der Widerstand $R = 50\hspace{0.05 cm}\rm \Omega$. Der Prozess $\{x_i(t)\}$

  • ist mittelwertfrei $(m_x = 0)$,
  • besitzt die gaußförmige AKF
$$\varphi_x (\tau) = \varphi_x (\tau = 0) \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_x)^2},$$
  • und weist eine äquivalente AKF-Dauer $\nabla \tau_x = 5\hspace{0.05 cm}\rm \mu s $ auf.


Wie aus dem unteren Bild zu erkennen ist, hat der Prozess $\{y_i(t)\}$ sehr viel stärkere innere statistische Bindungen als der Prozess $\{x_i(t)\}$.

Oder anders ausgedrückt: Der Zufallsprozess $\{y_i(t)\}$ ist niederfrequenter als $\{x_i(t)\}$. Die äquivalente AKF-Dauer ist $\nabla \tau_y = 10 \hspace{0.05 cm}\rm \mu s $.

Aus der Skizze ist auch zu erkennen, dass $\{y_i(t)\}$ im Gegensatz zu $\{x_i(t)\}$ nicht gleichsignalfrei ist. Der Gleichsignalanteil beträgt vielmehr $m_y = -0.3 \hspace{0.05 cm}\rm V$.


Hinweise:


Fragebogen

1

Welchen Effektivwert $(\sigma_x)$ besitzen die Mustersignale des Prozesses $\{x_i(t)\}$?

$\sigma_x \ = $

$\ \rm V$

2

Welche AKF-Werte ergeben sich für $\tau = 2\hspace{0.05 cm}\rm \mu s$ bzw. $\tau = 5\hspace{0.05 cm}\rm \mu s$?

$\varphi_x(\tau = 2\hspace{0.05 cm}{\rm \mu s}) \ = $

$\ \rm mW$
$\varphi_x(\tau = 2\hspace{0.05 cm}{\rm \mu s}) \ = $

$\ \rm mW$

3

Wie groß ist die Korrelationsdauer $T_{\rm K}$, also derjenige Zeitpunkt, bei dem die AKF auf die Hälfte des Maximums abgefallen ist?

$T_{\rm K} \ = $

$\ \rm \mu s$

4

Welchen Effektivwert $(\sigma_y)$ besitzen die Mustersignale des Prozesses $\{y_i(t)\}$?

$\sigma_y \ = $

$\ \rm V$

5

Berechnen Sie die AKF $\varphi_x(\tau)$. Wie groß ist der AKF-Wert bei $\tau = 10\hspace{0.05 cm}\rm \mu s$? Welcher AKF-Verlauf ergäbe sich bei positivem Mittelwert $(m_y = +0.3 \hspace{0.05 cm}\rm V)$?

$\varphi_y(\tau = 10\hspace{0.05 cm}{\rm \mu s}) \ = $

$\ \rm mW$


Musterlösung

(1)  Der quadratische Mittelwert ergibt sich zu $m_{2x} = R \cdot P_x = 50 \hspace{0.05 cm}{\rm \Omega}\cdot 5 \hspace{0.05 cm}{\rm mW}= 0.25 \hspace{0.05 cm}{\rm V}^2$ Daraus folgt der Effektivwert $\sigma_x\hspace{0.15 cm}\underline{= 0.5\hspace{0.05 cm}{\rm V}}$.

(2)  Wegen $P_x = \varphi_x (\tau = 0)$ gilt für die AKF allgemein: $\varphi_x (\tau) = 5 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_x)^2}.$ Daraus erhält man:

$$\varphi_x (\tau = {\rm 2\hspace{0.1cm} \mu s}) = 5 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- {\rm 0.16 }\pi } \hspace{0.15cm}\underline{= 3.025 \hspace{0.1cm} \rm mW},$$
$$\varphi_x (\tau = {\rm 5\hspace{0.1cm} \rm \mu s}) = 5 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- \pi } \hspace{0.15cm}\underline{= 0.216 \hspace{0.1cm} \rm mW}.$$

(3)  Hier gilt folgende Bestimmungsgleichung:

$${\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(T_{\rm K} / {\rm \nabla} \tau_x)^2} \stackrel{!}{=} {\rm 0.5} \hspace{0.5cm}\Rightarrow\hspace{0.5cm} (T_{\rm K} / {\rm \nabla} \tau_x)^2 = \sqrt{{ \ln(2)}/{\pi}}\hspace{0.05cm}.$$

Daraus folgt $T_{\rm K}\hspace{0.15 cm}\underline{= 2.35\hspace{0.05 cm}{\rm \mu s}}$. Bei anderer AKF-Form erhält man ein anderes Verhältnis für $T_{\rm K} / {\rm \nabla} \tau_x$.

Zweimal Gaußsche AKF

(4)  Wegen $P_x = P_y$ sind die quadratischen Mittelwerte von $x$ und $y$ gleich, und zwar jeweils $0.25\hspace{0.05 cm}\rm V^2$. Unter Berücksichtigung des Mittelwertes $m_y = -0.3 \hspace{0.05 cm}\rm V$ gilt: $m_y^2 + \sigma_y^2 = \rm 0.25 \hspace{0.05 cm} V^2.$ Daraus folgt $\sigma_y\hspace{0.15 cm}\underline{= 0.4\hspace{0.05 cm}{\rm V}}$


(5)  Bezogen auf den Einheitswiderstand $ R = 1 \hspace{0.05 cm}{\rm \Omega}$ lautet die AKF des Prozesses $\{y_i(t)\}$:

$$\varphi_y (\tau) = m_y^2 + \sigma_y^2 \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_y)^2}.$$

Rechts sehen Sie den Funktionsverlauf. Bezogen auf den Widerstand $ R = 50 \hspace{0.05 cm}{\rm \Omega}$ ergeben sich die nachfolgend angegebenen AKF-Werte:

$$\varphi_y (\tau = 0) = 5 \hspace{0.1cm} {\rm mW} , \hspace{0.5cm} \varphi_y (\tau \rightarrow \infty) = 1.8\hspace{0.1cm} {\rm mW} .$$

Daraus folgt:

$$\varphi_y(\tau) = 1.8 \hspace{0.1cm} {\rm mW} + 3.2 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_y)^2} \hspace{0.3cm }\Rightarrow \hspace{0.3cm }\varphi_y(\tau = 10\hspace{0.05 cm}{\rm \mu s}) \hspace{0.15 cm}\underline{=1.938\hspace{0.05 cm}\rm mW}.$$

Bei positivem Mittelwert $m_y$ (mit gleichem Betrag) würde sich an der AKF nichts ändern, da $m_y$ in die AKF-Gleichung quadratisch eingeht.