Aufgaben:Aufgabe 4.10Z: Korrelationsdauer: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 27: Zeile 27:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welchen Effektivwert besitzen die Mustersignale des Prozesses {<i>x<sub>i</sub></i>(<i>t</i>)}?
+
{Welchen Effektivwert $(\sigma_x)$ besitzen die Mustersignale des Prozesses $\{x_i(t)\}$?
 
|type="{}"}
 
|type="{}"}
$\sigma_x$ = { 0.5 3% } V
+
$\sigma_x \ = $ { 0.5 3% } $\ \rm V$
  
  
{Welche AKF-Werte ergeben sich f&uuml;r <i>&tau;</i> = 2 &mu;s bzw. f&uuml;r <i>&tau;</i> = 5 &mu;s?
+
{Welche AKF-Werte ergeben sich f&uuml;r $\tau = 2\hspace{0.05 cm}\rm \mu s$ bzw. $\tau = 5\hspace{0.05 cm}\rm \mu s$?
 
|type="{}"}
 
|type="{}"}
$\phi_x(\tau = 2 \mu s)$ = { 3.025 3% } $mW$
+
$\varphi_x(\tau = 2\hspace{0.05 cm}{\rm \mu s}) \ = $ { 3.025 3% } $\ \rm mW$
$\phi_x(\tau = 5 \mu s)$ = { 0.216 3% } $mW$
+
$\varphi_x(\tau = 2\hspace{0.05 cm}{\rm \mu s}) \ = $ { 0.216 3% } $\ \rm mW$
  
  
{Wie gro&szlig; ist die Korrelationsdauer <i>T</i><sub>K</sub>, also derjenige Zeitpunkt, bei dem die AKF auf die H&auml;lfte des Maximums abgefallen ist?
+
{Wie gro&szlig; ist die Korrelationsdauer $T_{\rm K}$, also derjenige Zeitpunkt, bei dem die AKF auf die H&auml;lfte des Maximums abgefallen ist?
 
|type="{}"}
 
|type="{}"}
$T_K$ = { 2.35 3% } $\mu s$
+
$T_{\rm K}  \ = $ { 2.35 3% } $\ \rm \mu s$
  
  
{Welchen Effektivwert besitzen die Mustersignale des Prozesses {<i>y<sub>i</sub></i>(<i>t</i>)}?
+
{Welchen Effektivwert $(\sigma_y)$ besitzen die Mustersignale des Prozesses $\{y_i(t)\}$?
 
|type="{}"}
 
|type="{}"}
$\sigma_y$ = { 0.4 3% } V
+
$\sigma_y \ = $ { 0.4 3% } $\ \rm V$
  
  
{Berechnen Sie die AKF <i>&phi;<sub>y</sub></i>(<i>&tau;</i>). Wie groß ist der AKF-Wert bei <i>&tau;</i> = 10 &mu;s? Welcher AKF-Verlauf ergäbe sich bei positivem Mittelwert (<i>m<sub>y</sub></i> = 0.3 V)?
+
{Berechnen Sie die AKF $\varphi_x(\tau)$. Wie groß ist der AKF-Wert bei $\tau = 10\hspace{0.05 cm}\rm \mu s$? Welcher AKF-Verlauf ergäbe sich bei positivem Mittelwert $(m_y = +0.3 \hspace{0.05 cm}\rm V)$?
 
|type="{}"}
 
|type="{}"}
$\phi_y(\tau = 10 \mu s)$ = { 1.938 3% } $mW$
+
$\varphi_y(\tau = 10\hspace{0.05 cm}{\rm \mu s}) \ = $ { 1.938 3% } $\ \rm mW$
  
  

Version vom 24. März 2017, 16:06 Uhr

Musterfunktionen ergodischer Prozesse

Das nebenstehende Bild zeigt Mustersignale zweier Zufallsprozesse $\{x_i(t)\}$ und $\{y_i(t)\}$ mit jeweils gleicher Leistung $P_x = P_y = 5\hspace{0.05 cm} \rm mW$. Vorausgesetzt ist hierbei der Widerstand $R = 50\hspace{0.05 cm}\rm \Omega$. Der Prozess $\{x_i(t)\}$

  • ist mittelwertfrei $(m_x = 0)$,
  • besitzt die gaußförmige AKF
$$\varphi_x (\tau) = \varphi_x (\tau = 0) \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_x)^2},$$
  • und weist eine äquivalente AKF-Dauer $\nabla \tau_x = 5\hspace{0.05 cm}\rm \mu s $ auf.


Wie aus dem unteren Bild zu erkennen ist, hat der Prozess $\{y_i(t)\}$ sehr viel stärkere innere statistische Bindungen als der Prozess $\{x_i(t)\}$.

Oder anders ausgedrückt: Der Zufallsprozess $\{y_i(t)\}$ ist niederfrequenter als $\{x_i(t)\}$. Die äquivalente AKF-Dauer ist $\nabla \tau_y = 10 \hspace{0.05 cm}\rm \mu s $.

Aus der Skizze ist auch zu erkennen, dass $\{y_i(t)\}$ im Gegensatz zu $\{x_i(t)\}$ nicht gleichsignalfrei ist. Der Gleichsignalanteil beträgt vielmehr $m_y = -0.3 \hspace{0.05 cm}\rm V$.


Hinweise:


Fragebogen

1

Welchen Effektivwert $(\sigma_x)$ besitzen die Mustersignale des Prozesses $\{x_i(t)\}$?

$\sigma_x \ = $

$\ \rm V$

2

Welche AKF-Werte ergeben sich für $\tau = 2\hspace{0.05 cm}\rm \mu s$ bzw. $\tau = 5\hspace{0.05 cm}\rm \mu s$?

$\varphi_x(\tau = 2\hspace{0.05 cm}{\rm \mu s}) \ = $

$\ \rm mW$
$\varphi_x(\tau = 2\hspace{0.05 cm}{\rm \mu s}) \ = $

$\ \rm mW$

3

Wie groß ist die Korrelationsdauer $T_{\rm K}$, also derjenige Zeitpunkt, bei dem die AKF auf die Hälfte des Maximums abgefallen ist?

$T_{\rm K} \ = $

$\ \rm \mu s$

4

Welchen Effektivwert $(\sigma_y)$ besitzen die Mustersignale des Prozesses $\{y_i(t)\}$?

$\sigma_y \ = $

$\ \rm V$

5

Berechnen Sie die AKF $\varphi_x(\tau)$. Wie groß ist der AKF-Wert bei $\tau = 10\hspace{0.05 cm}\rm \mu s$? Welcher AKF-Verlauf ergäbe sich bei positivem Mittelwert $(m_y = +0.3 \hspace{0.05 cm}\rm V)$?

$\varphi_y(\tau = 10\hspace{0.05 cm}{\rm \mu s}) \ = $

$\ \rm mW$


Musterlösung

1.  Der quadratische Mittelwert ergibt sich zu R · Px = 50 Ω · 5 mW = 0.25 V2. Daraus folgt der Effektivwert σx = 0.5V.
2.  Wegen Px = φx(τ = 0) gilt für die AKF allgemein:
$$\varphi_x (\tau) = 5 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_x)^2}.$$
Daraus erhält man:
$$\varphi_x (\tau = {\rm 2\hspace{0.1cm} \mu s}) = 5 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- {\rm 0.16 }\pi } \hspace{0.15cm}\underline{= 3.025 \hspace{0.1cm} \rm mW},$$
$$\varphi_x (\tau = {\rm 5\hspace{0.1cm} \rm \mu s}) = 5 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- \pi } \hspace{0.15cm}\underline{= 0.216 \hspace{0.1cm} \rm mW}.$$
3.  Hier gilt folgende Bestimmungsgleichung:
$${\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(T_{\rm K} / {\rm \nabla} \tau_x)^2} \stackrel{!}{=} {\rm 0.5} \hspace{0.5cm}\Rightarrow\hspace{0.5cm} (T_{\rm K} / {\rm \nabla} \tau_x)^2 = \sqrt{{ ln(2)}/{\pi}}\hspace{0.05cm}.$$
Daraus folgt TK = 2.35 μs. Bei anderer AKF-Form erhält man ein anderes Verhältnis für TK/∇τx.
4. Wegen Px = Py sind die quadratischen Mittelwerte von x und y gleich, und zwar jeweils 0.25 V2. Unter Berücksichtigung des Mittelwertes my = –0.3 V gilt:
$$m_y^2 + \sigma_y^2 = \rm 0.25 V^2.$$
P ID394 Sto Z 4 10 e.png
Daraus folgt σy = 0.4 V.
5.  Bezogen auf den Einheitswiderstand R = 1 Ω lautet die AKF des Prozesses {yi(t)}:
$$\varphi_y (\tau) = m_y^2 + \sigma_y^2 \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_y)^2}.$$
Rechts sehen Sie den Funktionsverlauf. Bezogen auf den Widerstand R = 50 Ω ergeben sich die nachfolgend angegebenen AKF-Werte:
$$\varphi_y (\tau = 0) = 5 \hspace{0.1cm} {\rm mW} , \hspace{0.1cm} \atop \varphi_y (\tau \rightarrow \infty) = 1.8\hspace{0.1cm} {\rm mW} .$$
Daraus folgt:
$$\varphi_y(\tau) = 1.8 \hspace{0.1cm} {\rm mW} + 3.2 \hspace{0.1cm} {\rm mW} \cdot {\rm e}^{- \pi \hspace{0.03cm} \cdot \hspace{0.03cm}(\tau / {\rm \nabla} \tau_y)^2}$$
mit dem Zahlenwert 1.938 mW bei τ = 10 μs. Bei positivem Mittelwert my (mit gleichem Betrag) würde sich an der AKF nichts ändern, da my in die AKF-Gleichung quadratisch eingeht.