Aufgabe 3.9Z: Sinustransformation

Aus LNTwww
Version vom 29. Mai 2018, 13:03 Uhr von Mwiki-lnt (Diskussion | Beiträge) (Textersetzung - „\*\s*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0\.” ein.“ durch „ “)
Wechseln zu:Navigation, Suche

Sinustransformation

Wir betrachten in dieser Aufgabe eine Zufallsgröße $x$ mit $\sin^2$–förmiger WDF im Bereich zwischen $x= 0$ und $x= 2$ (außerhalb ist die WDF identisch $0$): $$f_x(x)= \sin^2({\rm\pi}/{\rm 2}\cdot x) \hspace{1cm}\rm f\ddot{u}r\hspace{0.15cm}{\rm 0\le \it x \le \rm 2} .$$

Der Mittelwert und die Streuung dieser Zufallsgröße $x$ wurden bereits in der Aufgabe 3.3 ermittelt: $$m_x = 1,\hspace{0.2cm}\sigma_x = 0.361.$$

Eine weitere Zufallsgröße $y$ erhält man durch Transformation mittels der nichtlinearen Kennlinie $$y= g(x) =\sin({\rm\pi}{\rm 2}\cdot x).$$

Die Abbildung zeigt jeweils im Bereich $0 \le x \le 2$:

  • oben die WDF fx(x),
  • unten die nichtlineare Kennlinie $y = g(x)$.


Hinweise:

  • Vorgegeben sind die beiden unbestimmten Integrale:
$$\int \sin^{\rm 3}( ax)\,{\rm d}x = \frac{\rm 1}{ 3 a} \cdot \cos^{\rm 3}( ax)-\frac{\rm 1}{ a}\cdot \cos(ax),$$
$$\int \sin^{\rm 4}(ax)\,{\rm d}x =\frac{\rm 3}{\rm 8}\cdot x-\frac{\rm 1}{\rm 4 a} \cdot \sin(2 ax)+\frac{\rm 1}{32 a}\cdot \sin(4 ax).$$


Fragebogen

1

Welche der folgenden Aussagen sind zutreffend?

$y$ ist auf den Wertbereich $0 \le y \le 1$ begrenzt.
$y$ ist auf den Wertbereich $0 < y \le 1$ begrenzt.
Der Mittelwert $m_y$ ist kleiner als der Mittelwert $m_x$.

2

Berechnen Sie den Mittelwert der Zufallsgröße $y$.

$m_y \ =$

3

Berechnen Sie den quadratischen Mittelwert von $y$ und die Streuung.

$\sigma_y \ =$

4

Berechnen Sie die WDF $f_y(y)$. Hinweis: Beachten Sie die Symmetrieeigenschaften. Welcher WDF–Wert ergibt sich für $y = 0.6$?

$f_y(y=0.6) \ =$

5

Welcher WDF-Wert ergibt sich für $y = 1$? Interpretieren Sie das Ergebnis. Wie groß ist die Wahrscheinlichkeit, dass $y$ exakt gleich $1$ ist?

${\rm Pr}(y=1) \ =$


Musterlösung

(1)  Richtig sindder zweite und der dritte Lösungsvorschlag:

  • Aufgrund des Wertebereichs von $x$ und der gegebenen Kennlinie kann $y$ keine Werte kleiner als $0$ bzw. größer als $1$ annehmen.
  • Der Wert $y = 0$ kann allerdings ebenfalls nicht auftreten, da weder $x = 0$ noch $x = 2$ möglich sind.
  • Mit diesen Eigenschaften ergibt sich sicher $m_y < 1$, also ein kleinerer Wert als $m_x = 1$ (siehe Angabe).


(2)  Zur Lösung dieser Aufgabe könnte man beispielsweise zunächst die WDF $f_y(y)$ bestimmen und daraus in gewohnter Weise $m_y$ berechnen. Zum gleichen Ergebnis führt der direkte Weg: $$m_y={\rm E}[y]={\rm E}[g(x)]=\int_{-\infty}^{+\infty}g(x)\cdot f_x(x)\,{\rm d}x.$$

Mit den aktuellen Funktionen $g(x)$ und $f_x(x)$ erhält man: $$m_y=\int_{\rm 0}^{\rm 2}\hspace{-0.1cm}\sin^{\rm 3}({\pi}/{ 2}\cdot x)\,{\rm d}x=\frac{\rm 2}{\rm 3\cdot \pi}\cdot \cos^{\rm 3}({\pi}/{ 2}\cdot x)-\frac{\rm 2}{\rm \pi} \cdot \cos({3 \rm \pi}/{\rm 2}\cdot x)\Big|_{\rm 0}^{\rm 2}=\frac{\rm 8}{\rm 3\cdot \pi} \hspace{0.15cm}\underline{=\rm 0.849}.$$


(3)  In Analogie zu Punkt (2) gilt: $$m_{2 y}={\rm E}[y^{\rm 2}]={\rm E}[g^{\rm 2}( x)]=\int_{-\infty}^{+\infty}\hspace{-0.35cm}g^{2}( x)\cdot f_x(x)\,{\rm d}x.$$

Dies führt zum Ergebnis: $$ m_{ 2 y}=\int_{\rm 0}^{\rm 2}\hspace{-0.15cm}\sin^{\rm 4}({\rm \pi}/{\rm 2}\cdot x)\,{\rm d} x= \frac{\rm 3}{\rm 8}\cdot x-\frac{\rm 1}{\rm 2\cdot\pi}\cdot \sin(\rm \pi\cdot{\it x})+\frac{\rm 1}{\rm 16\cdot\pi}\cdot \sin(\rm 2 \pi\cdot {\it x})\Big|_{\rm 0}^{\rm 2} \hspace{0.15cm}{= \rm 0.75}.$$

Mit dem Ergebnis aus (2) folgt somit für die Streuung: $$ \sigma_{y}=\sqrt{\frac{\rm 3}{\rm 4}-\Big(\frac{\rm 8}{\rm 3\cdot\pi}\Big)^{\rm 2}} \hspace{0.15cm}\underline{\approx \rm 0.172}.$$


(4)  Aufgrund der Symmetrie von WDF $f_x(x)$ und Kennlinie $y =g(x)$ um $x = 1$ liefern die beiden Bereiche $0 \le x \le 1$ und $1 \le x \le 2$ jeweils den gleichen Beitrag für $f_y(y)$. Im ersten Bereich ist die Ableitung der Kennlinie positiv,

WDF nach Transformation

$$g'(x)={\rm \pi}/{\rm 2}\cdot \cos({\rm \pi}/{\rm 2}\cdot x),$$

und die Umkehrfunktion lautet: $$ x=h(y)={\rm 2}/{\rm \pi}\cdot \arcsin( y).$$

Unter Berücksichtigung des zweiten Beitrags durch den Faktor $2$ erhält man für die gesuchte WDF im Bereich $0 \le y \le 1$ (außerhalb ist $f_y(y) \equiv 0$): $$f_y(y)= 2\cdot\frac{\sin^{ 2}({ \pi}/{ 2}\cdot x)}{{ \pi}/{ 2}\cdot \cos({ \pi}/{ 2}\cdot x)}\Big|_{\, x={ 2}/{ \pi}\cdot \arcsin( y)}.$$

Dies führt zum Zwischenergebnis $$f_y(y)=\frac{4}{\pi}\cdot \frac{\sin^{2}(\arcsin( y ))}{\sqrt{\rm 1-\sin^{ 2}(\arcsin( y \rm ))}},$$

und wegen $\sin(\arcsin(y)) = y$: $$f_y(y)=\frac{ 4}{\pi}\cdot \frac{ y^{2}}{\sqrt{1- y^{\rm 2}}}.$$

An der Stelle $y = 0.6$ erhält man den Wert $f_y(y= 0.6)\hspace{0.15cm}\underline{=0.573}$. Rechts ist die WDF $f_y(y)$ grafisch dargestellt.


(5)  Die WDF ist an der Stelle $y = 1$ unendlich groß. Dies hängt damit zusammen, dass an dieser Stelle die Ableitung $g'(x)$ der Kennlinie horizontal verläuft. Da aber $y$ eine kontinuierliche Zufallsgröße ist, gilt trotzdem ${\rm Pr}(y = 1) \hspace{0.15cm}\underline{= 0}$.

Das bedeutet:

  • Eine Unendlichkeitsstelle in der WDF ist nicht identisch mit einer Diracfunktion.
  • Oder salopper ausgedrückt: Eine Unendlichkeitsstelle in der WDF ist „weniger” als eine Diracfunktion.