Aufgaben:Aufgabe 3.7Z: Partialbruchzerlegung: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
Zeile 90: Zeile 90:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind die <u> Lösungsvorschläge 1 und 2</u>:
+
'''(1)'''&nbsp; Richtig sind die&nbsp; <u> Lösungsvorschläge 1 und 2</u>:
*Nach den in der Aufgabe 3.4Z angegebenen Kriterien liegt immer dann ein Allpass vor, wenn es zu jeder Polstelle &nbsp;$p_{\rm x} = - A + {\rm j} \cdot B$&nbsp;  in der linken $p$&ndash;Halbebene eine entsprechende Nullstelle &nbsp;$p_{\rm o} = + A + {\rm j} \cdot B$&nbsp; in der rechten Halbebene gibt.  
+
*Nach den in der Aufgabe 3.4Z angegebenen Kriterien liegt immer dann ein Allpass vor,&nbsp; wenn es zu jeder Polstelle &nbsp;$p_{\rm x} = - A + {\rm j} \cdot B$&nbsp;  in der linken $p$&ndash;Halbebene eine entsprechende Nullstelle &nbsp;$p_{\rm o} = + A + {\rm j} \cdot B$&nbsp; in der rechten Halbebene gibt.  
 
*Mit&nbsp; $K = 1$&nbsp; ist dann die Dämpfungsfunktion &nbsp;$a(f) = 0 \ \rm  Np$ &nbsp; &#8658; &nbsp; $|H(f)| = 1$.  
 
*Mit&nbsp; $K = 1$&nbsp; ist dann die Dämpfungsfunktion &nbsp;$a(f) = 0 \ \rm  Np$ &nbsp; &#8658; &nbsp; $|H(f)| = 1$.  
 
*Aus der Grafik auf der Angabenseite erkennt man: &nbsp; Die Konfigurationen &nbsp;$(1)$ und &nbsp;$(2)$ erfüllen genau diese Symmetrieeigenschaften.
 
*Aus der Grafik auf der Angabenseite erkennt man: &nbsp; Die Konfigurationen &nbsp;$(1)$ und &nbsp;$(2)$ erfüllen genau diese Symmetrieeigenschaften.
Zeile 97: Zeile 97:
  
  
'''(2)'''&nbsp; Richtig ist der <u> Lösungsvorschlag 4</u>:
+
'''(2)'''&nbsp; Richtig ist der&nbsp; <u> Lösungsvorschlag 4</u>:
*Die Übertragungsfunktion &nbsp;$H_{\rm L}^{(5)}(p)$&nbsp; wird ebenso durch die Konfiguration &nbsp;$(4)$&nbsp; beschrieben, wie die nachfolgende Rechnung zeigt:
+
*Die Übertragungsfunktion &nbsp;$H_{\rm L}^{(5)}(p)$&nbsp; wird ebenso durch die Konfiguration &nbsp;$(4)$&nbsp; beschrieben,&nbsp; wie die nachfolgende Rechnung zeigt:
 
:$$H_{\rm L}^{(5)}(p) \hspace{0.25cm} =  \hspace{0.2cm} \frac{p/A}{(\sqrt{p/A}+\sqrt{A/p})^2}
 
:$$H_{\rm L}^{(5)}(p) \hspace{0.25cm} =  \hspace{0.2cm} \frac{p/A}{(\sqrt{p/A}+\sqrt{A/p})^2}
 
  =\frac{p/A}{{p/A}+2+ {A/p}}
 
  =\frac{p/A}{{p/A}+2+ {A/p}}
Zeile 104: Zeile 104:
 
  }= H_{\rm L}^{(4)}(p)
 
  }= H_{\rm L}^{(4)}(p)
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
*Die doppelte Nullstelle liegt bei &nbsp;$p_{\rm o} = 0$, der doppelte Pol bei &nbsp;$p_{\rm x} = -A = -2$.
+
*Die doppelte Nullstelle liegt bei &nbsp;$p_{\rm o} = 0$,&nbsp; der doppelte Pol bei &nbsp;$p_{\rm x} = -A = -2$.
  
  
Zeile 126: Zeile 126:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Richtig sind also die <u> Lösungsvorschläge 2 und 3</u> im Gegensatz zur Aussage 1:
+
Richtig sind also die&nbsp; <u> Lösungsvorschläge 2 und 3</u>&nbsp; im Gegensatz zur Aussage 1:
 
* Während &nbsp;$H_{\rm L}(p)$&nbsp; zwei konjugiert&ndash;komplexe Nullstellen aufweist,  
 
* Während &nbsp;$H_{\rm L}(p)$&nbsp; zwei konjugiert&ndash;komplexe Nullstellen aufweist,  
 
*besitzt &nbsp;$H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; nur eine einzige Nullstelle bei &nbsp;$p_{\rm o}\hspace{0.01cm}' = 0$.
 
*besitzt &nbsp;$H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; nur eine einzige Nullstelle bei &nbsp;$p_{\rm o}\hspace{0.01cm}' = 0$.
Zeile 141: Zeile 141:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
 
*Die Nullstelle von &nbsp;$H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; liegt nun bei &nbsp;$p_{\rm o}\hspace{0.01cm}' = -2$.
 
*Die Nullstelle von &nbsp;$H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; liegt nun bei &nbsp;$p_{\rm o}\hspace{0.01cm}' = -2$.
*Die Konstante ist &nbsp;$K\hspace{0.01cm}' = 4$ &nbsp; &#8658; &nbsp; richtig ist hier nur der <u> Lösungsvorschlag 2</u>.
+
*Die Konstante ist &nbsp;$K\hspace{0.01cm}' = 4$ &nbsp; &#8658; &nbsp; richtig ist hier nur der&nbsp; <u> Lösungsvorschlag 2</u>.
  
  
Zeile 151: Zeile 151:
 
  \cdot \frac{p+1}{(p+2)^2}
 
  \cdot \frac{p+1}{(p+2)^2}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Richtig ist auch hier <u>der Lösungsvorschlag 2</u>. Allgemein lässt sich sagen:  
+
Richtig ist auch hier&nbsp; <u>der Lösungsvorschlag 2</u>.&nbsp; Allgemein lässt sich sagen:  
 
*Durch die Partialbruchzerlegung wird die Anzahl und die Lage der Nullstellen verändert.  
 
*Durch die Partialbruchzerlegung wird die Anzahl und die Lage der Nullstellen verändert.  
*Die Pole von $H_{\rm L}\hspace{0.01cm}'(p)$ sind dagegen stets identisch mit denen von $H_{\rm L}(p)$.
+
*Die Pole von&nbsp; $H_{\rm L}\hspace{0.01cm}'(p)$&nbsp; sind dagegen stets identisch mit denen von&nbsp; $H_{\rm L}(p)$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Aktuelle Version vom 25. Januar 2022, 15:07 Uhr

Pol–Nullstellen–Diagramme

In der Grafik sind vier Vierpole durch ihre Pol–Nullstellen–Diagramme  $H_{\rm L}(p)$  gegeben.

  • Sie alle haben gemein,  dass die Anzahl  $Z$  der Nullstellen gleich der Anzahl  $N$  der Polstellen ist.
  • Der konstante Faktor ist jeweils  $K=1$.


Im Sonderfall  $Z = N$  kann zur Berechnung der Impulsantwort  $h(t)$  der Residuensatz nicht direkt angewendet werden.

Vielmehr muss vorher eine  Partialbruchzerlegung  entsprechend

$$H_{\rm L}(p) =1- H_{\rm L}\hspace{0.05cm}'(p) \hspace{0.05cm}$$

vorgenommen werden.  Für die Impulsantwort gilt dann

$$h(t) = \delta(t)- h\hspace{0.03cm}'(t) \hspace{0.05cm}.$$

$h\hspace{0.03cm}'(t)$  ist die Laplace–Rücktransformierte von  $H_{\rm L}\hspace{0.05cm}'(p)$,  bei der die Bedingung  $Z' < N'$  erfüllt ist.

Bei zwei der vier angegebenen Konfigurationen handelt es sich um so genannte  Allpässe.

  • Darunter versteht man Vierpole,  bei denen die Fourier–Spektralfunktion die Bedingung  $|H(f)| = 1$   ⇒   $a(f) = 0$  erfüllt.
  • In Aufgabe 3.4Z  ist angegeben,  wie die Pole und Nullstelle eines solchen Allpasses liegen müssen.


Weiterhin soll in dieser Aufgabe die  $p$–Übertragungsfunktion

$$H_{\rm L}^{(5)}(p) =\frac{p/A}{\left (\sqrt{p/A}+\sqrt{A/p} \right )^2} \hspace{0.05cm}$$

⇒   „Konfiguration $(5)$” näher untersucht werden,  die bei richtiger Wahl des Parameters  $A$  durch eines der vier in der Grafik vorgegebenen Pol–Nullstellen–Diagramme dargestellt werden kann.



Hinweise:



Fragebogen

1

Bei welchen der skizzierten Vierpole handelt es sich um Allpässe?

Konfiguration  $(1)$,
Konfiguration  $(2)$,
Konfiguration  $(3)$,
Konfiguration  $(4)$.

2

Welcher Vierpol hat die Übertragungsfunktion  $H_{\rm L}^{(5)}(p)$?

Konfiguration  $(1)$,
Konfiguration  $(2)$,
Konfiguration  $(3)$,
Konfiguration  $(4)$.

3

Berechnen Sie die Funktion  $H_{\rm L}\hspace{0.01cm}'(p)$  nach einer Partialbruchzerlegung für die Konfiguration  (1).
Geben Sie den Funktionswert für  $p = 0$  ein.

$H_{\rm L}\hspace{0.01cm}'(p = 0) \ = \ $

4

Berechnen Sie  $H_{\rm L}\hspace{0.01cm}'(p)$  für die Konfiguration  $(2)$.  Welche Aussagen treffen hier zu?

$H_{\rm L}\hspace{0.01cm}'(p)$  besitzt die gleichen Nullstellen wie  $H_{\rm L}(p)$.
$H_{\rm L}\hspace{0.01cm}'(p)$  besitzt die gleichen Polstellen wie  $H_{\rm L}(p)$.
Der konstante Faktor von  $H_{\rm L}\hspace{0.01cm}'(p)$  ist  $K' = 8$.

5

Berechnen Sie  $H_{\rm L}\hspace{0.01cm}'(p)$  für die Konfiguration  $(3)$.  Welche Aussagen treffen hier zu?

$H_{\rm L}\hspace{0.01cm}'(p)$  besitzt die gleichen Nullstellen wie  $H_{\rm L}(p)$.
$H_{\rm L}\hspace{0.01cm}'(p)$  besitzt die gleichen Polstellen wie  $H_{\rm L}(p)$.
Der konstante Faktor von  $H_{\rm L}\hspace{0.01cm}'(p)$  ist  $K' = 8$.

6

Berechnen Sie  $H_{\rm L}\hspace{0.01cm}'(p)$  für die Konfiguration  $(4)$.  Welche Aussagen treffen hier zu?

$H_{\rm L}\hspace{0.01cm}'(p)$  besitzt die gleichen Nullstellen wie  $H_{\rm L}(p)$.
$H_{\rm L}\hspace{0.01cm}'(p)$  besitzt die gleichen Polstellen wie  $H_{\rm L}(p)$.
Der konstante Faktor von  $H_{\rm L}\hspace{0.01cm}'(p)$  ist  $K' = 8$.


Musterlösung

(1)  Richtig sind die  Lösungsvorschläge 1 und 2:

  • Nach den in der Aufgabe 3.4Z angegebenen Kriterien liegt immer dann ein Allpass vor,  wenn es zu jeder Polstelle  $p_{\rm x} = - A + {\rm j} \cdot B$  in der linken $p$–Halbebene eine entsprechende Nullstelle  $p_{\rm o} = + A + {\rm j} \cdot B$  in der rechten Halbebene gibt.
  • Mit  $K = 1$  ist dann die Dämpfungsfunktion  $a(f) = 0 \ \rm Np$   ⇒   $|H(f)| = 1$.
  • Aus der Grafik auf der Angabenseite erkennt man:   Die Konfigurationen  $(1)$ und  $(2)$ erfüllen genau diese Symmetrieeigenschaften.


(2)  Richtig ist der  Lösungsvorschlag 4:

  • Die Übertragungsfunktion  $H_{\rm L}^{(5)}(p)$  wird ebenso durch die Konfiguration  $(4)$  beschrieben,  wie die nachfolgende Rechnung zeigt:
$$H_{\rm L}^{(5)}(p) \hspace{0.25cm} = \hspace{0.2cm} \frac{p/A}{(\sqrt{p/A}+\sqrt{A/p})^2} =\frac{p/A}{{p/A}+2+ {A/p}} = \hspace{0.2cm}\frac{p^2}{p^2 + 2A \cdot p + A^2} = \frac{p^2}{(p+A)^2 }= H_{\rm L}^{(4)}(p) \hspace{0.05cm}.$$
  • Die doppelte Nullstelle liegt bei  $p_{\rm o} = 0$,  der doppelte Pol bei  $p_{\rm x} = -A = -2$.


(3)  Für die Konfiguration  $(1)$  gilt:

$$H_{\rm L}(p) =\frac{p-2}{p+2}=\frac{p+2-4}{p+2}= 1 - \frac{4}{p+2}=1- H_{\rm L}\hspace{-0.05cm}'(p) \hspace{0.3cm} \Rightarrow \hspace{0.3cm}H_{\rm L}\hspace{-0.05cm}'(p) = \frac{4}{p+2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\hspace{0.15cm}\underline{H_{\rm L}\hspace{-0.05cm}'(p =0) =2} \hspace{0.05cm}.$$


(4)  In gleicher Weise ergibt sich für die Konfiguration  $(2)$:

$$H_{\rm L}(p) =\frac{(p-2 - {\rm j} \cdot 2)(p-2 + {\rm j} \cdot 2)}{(p+2 - {\rm j} \cdot 2)(p+2 + {\rm j} \cdot 2)}= \frac{p^2 -4\cdot p +8 }{p^2 +4\cdot p +8}= \hspace{0.2cm}\frac{p^2 +4\cdot p +8 -8\cdot p}{p^2 +4\cdot p +8} =1- \frac{8\cdot p}{p^2 +4\cdot p +8}=1- H_{\rm L}\hspace{-0.05cm}'(p)$$
$$\Rightarrow \hspace{0.3cm}H_{\rm L}\hspace{0.05cm}'(p) = 8 \cdot \frac{p}{(p+2 - {\rm j} \cdot 2)(p+2 + {\rm j} \cdot 2)} \hspace{0.05cm}.$$

Richtig sind also die  Lösungsvorschläge 2 und 3  im Gegensatz zur Aussage 1:

  • Während  $H_{\rm L}(p)$  zwei konjugiert–komplexe Nullstellen aufweist,
  • besitzt  $H_{\rm L}\hspace{0.01cm}'(p)$  nur eine einzige Nullstelle bei  $p_{\rm o}\hspace{0.01cm}' = 0$.



(5)  Für die Konfiguration  $(3)$  gilt:

$$H_{\rm L}(p) = \frac{p^2 }{p^2 +4\cdot p +8}=\frac{p^2 +4\cdot p +8 -4\cdot p -8 }{p^2 +4\cdot p +8} = 1- H_{\rm L}\hspace{-0.05cm}'(p)$$
$$\Rightarrow \hspace{0.3cm}H_{\rm L}\hspace{-0.05cm}'(p) = 4 \cdot \frac{p+2}{(p+2 - {\rm j} \cdot 2)(p+2 + {\rm j} \cdot 2)} \hspace{0.05cm}.$$
  • Die Nullstelle von  $H_{\rm L}\hspace{0.01cm}'(p)$  liegt nun bei  $p_{\rm o}\hspace{0.01cm}' = -2$.
  • Die Konstante ist  $K\hspace{0.01cm}' = 4$   ⇒   richtig ist hier nur der  Lösungsvorschlag 2.


(6)  Schließlich gilt für die Konfiguration  $(4)$:

$$H_{\rm L}(p) = \frac{p^2 }{(p+2)^2}=\frac{p^2 +4\cdot p +4 -4\cdot p -4 }{p^2 +4\cdot p +4} = 1- \frac{4\cdot p +4 }{p^2 +4\cdot p +4} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}H_{\rm L}\hspace{0.05cm}'(p) = 4 \cdot \frac{p+1}{(p+2)^2} \hspace{0.05cm}.$$

Richtig ist auch hier  der Lösungsvorschlag 2.  Allgemein lässt sich sagen:

  • Durch die Partialbruchzerlegung wird die Anzahl und die Lage der Nullstellen verändert.
  • Die Pole von  $H_{\rm L}\hspace{0.01cm}'(p)$  sind dagegen stets identisch mit denen von  $H_{\rm L}(p)$.