Aufgaben:Aufgabe 3.6Z: Komplexe Exponentialfunktion: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 11: Zeile 11:
 
*Die Aufgabe gehört zum  Kapitel [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation|Gesetzmäßigkeiten der Fouriertransformation]].
 
*Die Aufgabe gehört zum  Kapitel [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation|Gesetzmäßigkeiten der Fouriertransformation]].
 
*Alle dort dargelegten Gesetzmäßigkeiten werden im Lernvideo [[Gesetzmäßigkeiten der Fouriertransformation (Dauer Teil 1: 5:57 – Teil 2: 5:55)]] an Beispielen verdeutlicht.
 
*Alle dort dargelegten Gesetzmäßigkeiten werden im Lernvideo [[Gesetzmäßigkeiten der Fouriertransformation (Dauer Teil 1: 5:57 – Teil 2: 5:55)]] an Beispielen verdeutlicht.
*Lösen Sie diese Aufgabe mit Hilfe des [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Zuordnungssatz|Zuordnungssatzes]] und dem [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Verschiebungssatz|Verschiebungssatz]].
+
*Lösen Sie diese Aufgabe mit Hilfe des [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Zuordnungssatz|Zuordnungssatzes]] und des [[Signaldarstellung/Gesetzmäßigkeiten_der_Fouriertransformation#Verschiebungssatz|Verschiebungssatzes]].
 
*Verwenden Sie für die beiden ersten Teilaufgaben die Signalparameter $A = 1\, \text{V}$ und $f_0 = 125 \,\text{kHz}.$
 
*Verwenden Sie für die beiden ersten Teilaufgaben die Signalparameter $A = 1\, \text{V}$ und $f_0 = 125 \,\text{kHz}.$
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Zeile 19: Zeile 19:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie lautet die zu $\text{G(f)}$ passende Zeitfunktion $\text{g(t)}$? Wie groß ist $g(t = 1 \mu s)$?
+
{Wie lautet die zu $G(f)$ passende Zeitfunktion $g(t)$? Wie groß ist $g(t = 1 \, \mu \text {s})$?
 
|type="{}"}
 
|type="{}"}
$\text{Re}[g(t = 1 \mu s)]$ = { 0.707 3% } $\text{V}$
+
$\text{Re}[g(t = 1 \, \mu \text {s})]$ &nbsp;= { 0.707 3% } &nbsp;$\text{V}$
$\text{Im}[g(t = 1 \mu s)]$ = { 0 3% } $\text{V}$
+
$\text{Im}[g(t = 1 \, \mu \text {s})]$ &nbsp;= { 0. } &nbsp;$\text{V}$
  
  
{Wie lautet die zu $\text{U(f)}$ passende Zeitfunktion $\text{u(t)}$? Wie groß ist $u(t = 1 \mu s)$?
+
{Wie lautet die zu $U(f)$ passende Zeitfunktion $u(t)$? Wie groß ist $u(t = 1 \, \mu \text {s})$?
 
|type="{}"}
 
|type="{}"}
$\text{Re}[u(t = 1 \mu s)]$ = { 0 3% } $\text{V}$
+
$\text{Re}[u(t = 1 \, \mu \text {s})]$ &nbsp;= { 0. } &nbsp;$\text{V}$
$\text{Im}[u(t = 1 \mu s)]$ = { 0.707 3% } $\text{V}$
+
$\text{Im}[g(t = 1 \, \mu \text {s})]$ &nbsp;= { 0.707 3% } &nbsp;$\text{V}$
  
  
{Welche der Aussagen sind bezüglich des Signals $\text{x(t)}$ zutreffend?
+
{Welche der Aussagen sind bezüglich des Signals $x(t)$ zutreffend?
 
|type="[]"}
 
|type="[]"}
+ Das Signal lautet $\text{x(t)} = A \cdot exp(j2\pi f_0 t)$.
+
+ Das Signal lautet $x(t) = A \cdot {\rm e}^{{\rm j}2\pi f_0 t)}$.
- In der komplexen Ebene dreht $\text{x(t)}$ im Uhrzeigersinn.
+
- In der komplexen Ebene dreht $x(t)$ im Uhrzeigersinn.
+ $\text{x(t)}$ dreht stattdessen entgegen dem Uhrzeigersinn.
+
+ In der komplexen Ebene dreht $x(t)$ entgegen dem Uhrzeigersinn.
 
- Für eine Umdrehung wird eine Mikrosekunde benötigt.
 
- Für eine Umdrehung wird eine Mikrosekunde benötigt.
  

Version vom 18. Januar 2017, 11:48 Uhr

Komplexe Exponentialfunktion

In Zusammenhang mit den Bandpass-Systemen wird oft mit einseitigen Spektren gearbeitet. In der Abbildung sehen Sie eine solche einseitige Spektralfunktion $\text{X(f)}$, die ein komplexes Zeitsignal $\text{x(t)}$ zur Folge hat.

In der unteren Skizze ist ${X(f)}$ in einen – bezüglich der Frequenz – geraden Anteil ${G(f)}$ sowie einen ungeraden Anteil ${U(f)}$ aufgespaltet.

Hinweise:


Fragebogen

1

Wie lautet die zu $G(f)$ passende Zeitfunktion $g(t)$? Wie groß ist $g(t = 1 \, \mu \text {s})$?

$\text{Re}[g(t = 1 \, \mu \text {s})]$  =

 $\text{V}$
$\text{Im}[g(t = 1 \, \mu \text {s})]$  =

 $\text{V}$

2

Wie lautet die zu $U(f)$ passende Zeitfunktion $u(t)$? Wie groß ist $u(t = 1 \, \mu \text {s})$?

$\text{Re}[u(t = 1 \, \mu \text {s})]$  =

 $\text{V}$
$\text{Im}[g(t = 1 \, \mu \text {s})]$  =

 $\text{V}$

3

Welche der Aussagen sind bezüglich des Signals $x(t)$ zutreffend?

Das Signal lautet $x(t) = A \cdot {\rm e}^{{\rm j}2\pi f_0 t)}$.
In der komplexen Ebene dreht $x(t)$ im Uhrzeigersinn.
In der komplexen Ebene dreht $x(t)$ entgegen dem Uhrzeigersinn.
Für eine Umdrehung wird eine Mikrosekunde benötigt.


Musterlösung

1. $\text{G(f)}$ ist die Spektralfunktion eines Cosinussignals mit der Periodendauer $T_0 = 1/f_0 = 8 \text{$\mu$s}$:

$$g( t ) = A \cdot \cos ( {2{\rm{\pi }}f_0 t} ).$$

Bei $t = 1 \text{$\mu$s}$ ist der Signalwert gleich $A \cdot cos(\pi /4)$, also $0.707 \text{V}$ (Realteil) und $0$ (Imaginärteil).

2. Ausgehend von der Fourierkorrespondenz

$$A \cdot {\rm \delta} ( f )\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, A$$

erhält man durch zweimalige Anwendung des Verschiebungssatzes (im Frequenzbereich):

$$U( f ) = \frac{A}{2} \cdot \delta ( {f - f_0 } ) - \frac{A}{2} \cdot \delta ( {f + f_0 } )\circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\, u( t ) = \frac{A}{2}\left( {{\rm{e}}^{{\rm{j}}2{\rm{\pi }}f_0 t} - {\rm{e}}^{{\rm{ - j}}2{\rm{\pi }}f_0 t} } \right).$$

Nach dem Satz von Euler kann hierfür auch geschrieben werden:

$$u( t ) = {\rm{j}} \cdot A \cdot \sin ( {2{\rm{\pi }}f_0 t} ).$$

Der Realteil dieses Signals ist stets $0$. Der Imaginärteil hat zur Zeit $t = 1 \text{$\mu$s}$ den Wert $0.707 \text{V}$.

3. Wegen $\text{X(f)} = \text{G(f)} + \text{U(f)}$ gilt auch:

$$x(t) = g(t) + u(t) = A \cdot \cos ( {2{\rm{\pi }}f_0 t} ) + {\rm{j}} \cdot A \cdot \sin( {2{\rm{\pi }}f_0 t} ).$$

Dieses Ergebnis kann mit dem Satz von Euler wie folgt zusammengefasst werden:

$$x(t) = A \cdot {\rm{e}}^{{\rm{j}}2{\rm{\pi }}f_0 t} .$$

Das Signal dreht in der komplexen Ebene in mathematisch positiver Richtung, also entgegen dem Uhrzeigersinn. Für eine Umdrehung benötigt der „Zeiger” die Periodendauer $T_0 = 1/f_0 = 8 \text{$\mu$s}$. Richtig sind also die vorgegebenen Alternativen 1 und 3.