Aufgaben:Aufgabe 3.5Z: Anwendung des Residuensatzes: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:P_ID1781__LZI_Z_3_5.png|right|Sechs verschiedene Pol–Nullstellen–Konfigurationen]]
+
[[Datei:P_ID1781__LZI_Z_3_5.png|right|frame|Sechs verschiedene Pol–Nullstellen–Konfigurationen]]
 
Die Spektralfunktion $Y_{\rm L}(p)$ sei in Pol–Nullstellen–Form gegeben, gekennzeichnet durch  
 
Die Spektralfunktion $Y_{\rm L}(p)$ sei in Pol–Nullstellen–Form gegeben, gekennzeichnet durch  
 
*$Z$ Nullstellen $p_{{\rm o}i}$,  
 
*$Z$ Nullstellen $p_{{\rm o}i}$,  
*$N$> Pole $p_{{\rm x}i}$, sowie  
+
*$N$ Pole $p_{{\rm x}i}$, sowie  
 
*die Konstante $K$.  
 
*die Konstante $K$.  
  
Betrachtet werden in dieser Aufgabe die in der Grafik dargestellten Konfigurationen, wobei stets $K= 2$ gilt.
 
  
Für den Fall, dass die Anzahl $Z$ der Nullstellen kleiner als die Anzahl $N$ der Pole ist, kann das zugehörige Zeitsignal $y(t)$ durch Anwendung des [[Lineare_zeitinvariante_Systeme/Laplace–Rücktransformation#Formulierung_des_Residuensatzes|Residuensatzes]] direkt ermittelt werden. In diesem Fall gilt
+
Betrachtet werden im Folgenden die in der Grafik dargestellten Konfigurationen. Es gelte stets $K= 2$.
$$y(t) = \sum_{i=1}^{I} \left \{
+
 
 +
Für den Fall, dass die Anzahl $Z$ der Nullstellen kleiner als die Anzahl $N$ der Pole ist, kann das zugehörige Zeitsignal $y(t)$ durch Anwendung des [[Lineare_zeitinvariante_Systeme/Laplace–Rücktransformation#Formulierung_des_Residuensatzes|Residuensatzes]] direkt ermittelt werden.  
 +
 
 +
In diesem Fall gilt
 +
:$$y(t) = \sum_{i=1}^{I} \left \{
 
  Y_{\rm L}(p)\cdot (p - p_{{\rm x}i})\cdot  {\rm e}^{\hspace{0.05cm}p
 
  Y_{\rm L}(p)\cdot (p - p_{{\rm x}i})\cdot  {\rm e}^{\hspace{0.05cm}p
 
  \hspace{0.05cm}t}
 
  \hspace{0.05cm}t}
 
  \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}i}} \right
 
  \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}i}} \right
  \} \hspace{0.05cm},$$
+
  \} \hspace{0.05cm}.$$
wobei $I$ die Anzahl der unterscheidbaren Pole angibt. Bei allen hier vorgegebenen Konstellationen gilt stets $I = N$.
+
$I$ gibt die Anzahl der unterscheidbaren Pole an (bei allen vorgegebenen Konstellationen ist $I = N$).
 +
 
 +
 
 +
 
 +
 
 +
 
  
 
''Hinweise:''  
 
''Hinweise:''  
 
*Die Aufgabe gehört zum Kapitel  [[Lineare_zeitinvariante_Systeme/Laplace–Rücktransformation|Laplace–Rücktransformation]].
 
*Die Aufgabe gehört zum Kapitel  [[Lineare_zeitinvariante_Systeme/Laplace–Rücktransformation|Laplace–Rücktransformation]].
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
*Ist das Zeitsignal $y(t)$ komplex, so kann $Y_{\rm L}(p)$ nicht als Schaltung realisiert werden. Die Anwendung des Residuensatzes ist aber auch in diesem Fall möglich.
+
*Ist das Zeitsignal $y(t)$ komplex, so kann $Y_{\rm L}(p)$ nicht als Schaltung realisiert werden. Die Anwendung des Residuensatzes ist aber trotzdem möglich.
*Die komplexe Frequenz $p$, die Nullstellen $p_{{\rm o}i}$ sowie die Pole $p_{{\rm ox}i}$ beschreiben in dieser Aufgabe jeweils normierte Größen ohne Einheit. Damit ist auch die Zeit $t$ dimensionslos.
+
*Die komplexe Frequenz $p$, die Nullstellen $p_{{\rm o}i}$ sowie die Pole $p_{{\rm o}i}$ beschreiben in dieser Aufgabe jeweils normierte Größen ohne Einheit. Damit ist auch die Zeit $t$ dimensionslos.
  
  
Zeile 31: Zeile 39:
 
{Bei welchen Konfigurationen lässt sich der Residuensatz nicht direkt anwenden?
 
{Bei welchen Konfigurationen lässt sich der Residuensatz nicht direkt anwenden?
 
|type="[]"}
 
|type="[]"}
- Konfiguration A,
+
- Konfiguration $\rm A$,
+ Konfiguration B,
+
+ Konfiguration $\rm B$,
- Konfiguration C,
+
- Konfiguration $\rm C$,
+ Konfiguration D,
+
+ Konfiguration $\rm D$,
- Konfiguration E,
+
- Konfiguration $\rm E$,
+ Konfiguration F,
+
+ Konfiguration $\rm F$.
  
  
{Berechnen Sie $y(t)$ für die Konfiguration <b>A</b> mit $K= 2$ und $p_{\rm x} = -1$. Welcher Zahlenwert ergibt sich für den Zeitpunkt $t = 1$?
+
{Berechnen Sie $y(t)$ für die Konfiguration $\rm A$ mit $K= 2$ und $p_{\rm x} = -1$. Welcher Zahlenwert ergibt sich für den Zeitpunkt $t = 1$?
 
|type="{}"}
 
|type="{}"}
Konfiguration '''A''': &nbsp; $\ {\rm Re}\{y(t = 1)\}  \ =$  { 0.736 3% }
+
$\ {\rm Re}\{y(t = 1)\}  \ = \ $  { 0.736 3% }
$\ {\rm Im}\{y(t = 1)\}  \ =$ { 0. }
+
$\ {\rm Im}\{y(t = 1)\}  \ = \ $ { 0. }
  
  
{Berechnen Sie $y(t)$ für die Konfiguration <b>C</b> mit $K= 2$ und $p_{\rm x} = -0.2 + {\rm j} \cdot 1.5\pi$. Welcher Zahlenwert ergibt sich für den Zeitpunkt $t = 1$?
+
{Berechnen Sie $y(t)$ für die Konfiguration $\rm C$ mit $K= 2$ und $p_{\rm x} = -0.2 + {\rm j} \cdot 1.5\pi$. Welcher Zahlenwert ergibt sich für den Zeitpunkt $t = 1$?
 
|type="{}"}
 
|type="{}"}
Konfiguration '''C''': &nbsp; $\ {\rm Re}\{y(t = 1)\}  \ =$ { 0. }
+
$\ {\rm Re}\{y(t = 1)\}  \ = \ $ { 0. }
$\ {\rm Im}\{y(t = 1)\}  \ =$ { -1.643--1.633 }
+
$\ {\rm Im}\{y(t = 1)\}  \ = \ $ { -1.643--1.633 }
  
  
{Welcher Signalwert $y(t = 1)$ ergibt sich bei der Konstellation <b>E</b> mit $K= 2$ und zwei Polstellen bei $p_{\rm x} = -0.2 \pm {\rm j} \cdot 1.5\pi$?
+
{Welcher Signalwert $y(t = 1)$ ergibt sich bei der Konstellation $\rm E$ mit $K= 2$ und zwei Polstellen bei $p_{\rm x} = -0.2 \pm {\rm j} \cdot 1.5\pi$?
 
|type="{}"}
 
|type="{}"}
Konfiguration '''E''': &nbsp; $\ {\rm Re}\{y(t = 1)\}  \ =$ { -0.357--0.337 }
+
$\ {\rm Re}\{y(t = 1)\}  \ = \ $ { -0.357--0.337 }
$\ {\rm Im}\{y(t = 1)\}  \ =$ { 0. }
+
$\ {\rm Im}\{y(t = 1)\}  \ = \ $ { 0. }
  
  

Version vom 17. März 2018, 15:24 Uhr

Sechs verschiedene Pol–Nullstellen–Konfigurationen

Die Spektralfunktion $Y_{\rm L}(p)$ sei in Pol–Nullstellen–Form gegeben, gekennzeichnet durch

  • $Z$ Nullstellen $p_{{\rm o}i}$,
  • $N$ Pole $p_{{\rm x}i}$, sowie
  • die Konstante $K$.


Betrachtet werden im Folgenden die in der Grafik dargestellten Konfigurationen. Es gelte stets $K= 2$.

Für den Fall, dass die Anzahl $Z$ der Nullstellen kleiner als die Anzahl $N$ der Pole ist, kann das zugehörige Zeitsignal $y(t)$ durch Anwendung des Residuensatzes direkt ermittelt werden.

In diesem Fall gilt

$$y(t) = \sum_{i=1}^{I} \left \{ Y_{\rm L}(p)\cdot (p - p_{{\rm x}i})\cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}i}} \right \} \hspace{0.05cm}.$$

$I$ gibt die Anzahl der unterscheidbaren Pole an (bei allen vorgegebenen Konstellationen ist $I = N$).




Hinweise:

  • Die Aufgabe gehört zum Kapitel Laplace–Rücktransformation.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
  • Ist das Zeitsignal $y(t)$ komplex, so kann $Y_{\rm L}(p)$ nicht als Schaltung realisiert werden. Die Anwendung des Residuensatzes ist aber trotzdem möglich.
  • Die komplexe Frequenz $p$, die Nullstellen $p_{{\rm o}i}$ sowie die Pole $p_{{\rm o}i}$ beschreiben in dieser Aufgabe jeweils normierte Größen ohne Einheit. Damit ist auch die Zeit $t$ dimensionslos.


Fragebogen

1

Bei welchen Konfigurationen lässt sich der Residuensatz nicht direkt anwenden?

Konfiguration $\rm A$,
Konfiguration $\rm B$,
Konfiguration $\rm C$,
Konfiguration $\rm D$,
Konfiguration $\rm E$,
Konfiguration $\rm F$.

2

Berechnen Sie $y(t)$ für die Konfiguration $\rm A$ mit $K= 2$ und $p_{\rm x} = -1$. Welcher Zahlenwert ergibt sich für den Zeitpunkt $t = 1$?

$\ {\rm Re}\{y(t = 1)\} \ = \ $

$\ {\rm Im}\{y(t = 1)\} \ = \ $

3

Berechnen Sie $y(t)$ für die Konfiguration $\rm C$ mit $K= 2$ und $p_{\rm x} = -0.2 + {\rm j} \cdot 1.5\pi$. Welcher Zahlenwert ergibt sich für den Zeitpunkt $t = 1$?

$\ {\rm Re}\{y(t = 1)\} \ = \ $

$\ {\rm Im}\{y(t = 1)\} \ = \ $

4

Welcher Signalwert $y(t = 1)$ ergibt sich bei der Konstellation $\rm E$ mit $K= 2$ und zwei Polstellen bei $p_{\rm x} = -0.2 \pm {\rm j} \cdot 1.5\pi$?

$\ {\rm Re}\{y(t = 1)\} \ = \ $

$\ {\rm Im}\{y(t = 1)\} \ = \ $


Musterlösung

(1)  Voraussetzung für die Anwendung des Residuensatzes ist, dass es weniger Nullstellen als Pole gibt, das heißt, es muss $Z < N$ gelten. Diese Voraussetzung ist bei den Konfigurationen B, D und F nicht gegeben. Hier muss zunächst eine Partialbruchzerlegung vorgenommen werden, zum Beispiel für die Konfiguration B mit $p_x = -1$: $$Y_{\rm L}(p)= \frac {p} {p +1}= 1-\frac {1} {p +1} \hspace{0.05cm} .$$


(2)  Mit $Y_{\rm L}(p) = 2/(p+1)$ ergibt sich aus dem Residuensatz mit $I=1$: $$y(t) = 2 \cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}-1}= 2 \cdot {\rm e}^{- \hspace{0.05cm}t}\hspace{0.3cm}\Rightarrow \hspace{0.3cm}y(t=1) =\frac{2}{\rm e} \hspace{0.15cm}\underline{ \approx 0.736 \hspace{0.15cm}{\rm (rein\hspace{0.15cm}reell)}} \hspace{0.05cm} .$$


(3)  Bei gleicher Vorgehensweise wie in der Teilaufgabe (2) erhält man nun: $$y(t) = 2 \cdot {\rm e}^{\hspace{0.05cm}-(0.2 \hspace{0.05cm}+ \hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}1.5 \pi) \hspace{0.05cm} \cdot \hspace{0.05cm}t} = 2 \cdot {\rm e}^{\hspace{0.05cm}-0.2 \hspace{0.08cm}\cdot \hspace{0.05cm}t}\cdot {\rm e}^{\hspace{0.05cm}-{\rm j} \hspace{0.08cm}\cdot \hspace{0.05cm}1.5 \pi\hspace{0.05cm}\cdot \hspace{0.05cm}t} \hspace{0.05cm} .$$ Aufgrund des zweiten Terms handelt es sich um ein komplexes Signal, dessen Phase in mathematisch positiver Richtung (entgegen dem Uhrzeigersinn) dreht. Für $t=1$ gilt: $$y(t = 1) = 2 \cdot {\rm e}^{\hspace{0.05cm}-0.2} \cdot \left [ \cos(1.5 \pi) + {\rm j} \cdot \sin(1.5 \pi) \right ]= - {\rm j} \cdot 1.638$$ $$\Rightarrow \hspace{0.3cm}{\rm Re}\{y(t = 1)\} \hspace{0.15cm}\underline{ = 0},\hspace{0.2cm} {\rm Im}\{y(t = 1)\} \hspace{0.15cm}\underline{=- 1.638} \hspace{0.05cm} .$$ Die linke Grafik zeigt das komplexe Signal für einen Pol bei $p_x = -2 + {\rm j} \cdot 1.5 \pi$ . Rechts daneben sieht man das dazu konjugiert–komplexe Signal, wenn der Pol bei $p_x = -2 - {\rm j} \cdot 1.5 \pi$.

Komplexe Signale bei einem Pol


(4)  Nun gilt $I=2$. Die Residien von $p_{x1}$ bzw. $p_{x2}$ liefern: $$y_1(t) = \frac {K \cdot (p-p_{{\rm x}1})} { (p-p_{{\rm x}1})(p-p_{{\rm x}2})} \cdot {\rm e}^{\hspace{0.05cm}p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}1}}= \frac {K } { p_{{\rm x}1}-p_{{\rm x}2}} \cdot {\rm e}^{\hspace{0.05cm}p_{{\rm x}1} \hspace{0.05cm}t} \hspace{0.05cm} ,$$ $$ y_2(t) = \frac {K } { p_{{\rm x}2}-p_{{\rm x}1}} \cdot {\rm e}^{\hspace{0.05cm}p_{{\rm x}2} \hspace{0.05cm}t}= -\frac {K } { p_{{\rm x}1}-p_{{\rm x}2}} \cdot {\rm e}^{-p_{{\rm x}1} \hspace{0.05cm}t}$$ $$\Rightarrow \hspace{0.3cm}y(t)= y_1(t)+y_2(t) = \frac {2 \cdot {\rm e}^{\hspace{0.05cm}-0.2 \hspace{0.08cm}\cdot \hspace{0.05cm}t}}{{\rm j} \cdot 3 \pi} \cdot \left [ \cos(.) + {\rm j} \cdot \sin(.) - \cos(.) + {\rm j} \cdot \sin(.)\right ]= \frac {4 }{ 3 \pi} \cdot {\rm e}^{\hspace{0.05cm}-0.2 \hspace{0.08cm}\cdot \hspace{0.05cm}t}\cdot \sin(1.5\pi \cdot t)$$

Signalverlauf der Konfiguration E

$$\Rightarrow \hspace{0.3cm}y(t=1)= -\frac {4 }{ 3 \pi} \cdot {\rm e}^{\hspace{0.05cm}-0.2 \hspace{0.08cm}\cdot \hspace{0.05cm}t} \hspace{0.15cm}\underline{= -0.347} \hspace{0.05cm} .$$

Die Grafik zeigt den (rein reellen) Signalverlauf $y(t)$ für die Konfiguration E.