Aufgaben:Aufgabe 3.5: Rekursive Filter für GF(2): Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
(Die Seite wurde neu angelegt: „{{quiz-Header|Buchseite=Kanalcodierung/Algebraische und polynomische Beschreibung }} [[Datei:|right|]] ===Fragebogen=== <quiz display=simple> {Multipl…“)
 
Zeile 1: Zeile 1:
{{quiz-Header|Buchseite=Kanalcodierung/Algebraische und polynomische Beschreibung
+
{{quiz-Header|Buchseite=Kanalcodierung/Algebraische und polynomische Beschreibung}}
  
 +
[[Datei:P_ID2647__KC_A_3_5.png|right|frame|Rekursive Filter]]
 +
Die obere der beiden dargestellten Schaltungen zeigt ein rekursives Filter zweiter Ordnung in allgemeiner Form. Mit
 +
:$$A(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  a_0 + a_1 \cdot D + a_2 \cdot D^2  \hspace{0.05cm},$$
 +
:$$B(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm}  1 + b_1 \cdot D + b_2 \cdot D^2 $$
  
 +
erhält man für die Übertragungsfunktion
 +
:$$G(D) = \frac{A(D)}{B(D)} = \frac{a_0 + a_1 \cdot D + a_2 \cdot D^2}{1 + b_1 \cdot D + b_2 \cdot D^2} \hspace{0.05cm}.$$
  
 +
Zu beachten ist, dass sich alle Rechenoperationen auf ${\rm GF(2)}$ beziehen. Damit sind auch die Filterkoeffizienten $a_0, a_1, a_2, b_1$ und $b_2$ binär (entweder $0$ oder $1$).
  
 +
Die untere Grafik zeigt das für die vorliegende Aufgabe spezifische Filter. Ein Filterkoeffizient ergibt sich zu $a_i = 1$, wenn die Verbindung durchgeschaltet ist $(0 &8804; i &#8804; 2)$. Andernfalls ist $a_i = 0$. Die gleiche Systematik gilt für die Koeffizienten $b_1$ und $b_2$.
  
}}
+
In den Teilaufgaben (1), ... , (3) sollen Sie für verschiedene Eingangssequenzen
 +
* $\underline{u} = (1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, ...)$,
 +
* $\underline{u} = (0, \, 1, \, 0, \, 1, \, 0, \, 0, \, 1, \, 1, \, ...)$,
 +
* $\underline{u} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, ...)$
 +
 
 +
 
 +
die jeweilige Ausgangssequenz $\underline{x}$ anhand der vorgegebenen Schaltung ermitteln. Es ist zu berücksichtigen:
 +
* Besteht die Eingangssequenz $\underline{u}$ aus einer Eins gefolgt von lauter Nullen, so bezeichnet man diese spezifische Ausgangssequenz $\underline{x}$ als die <i>Impulsantwort</i> $\underline{g}$, und es gilt:
 +
:$$\underline{g} \hspace{0.15cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.15cm}{G}(D)\hspace{0.05cm}. $$
 +
* Andernfalls ergibt sich die Ausgangssequenz als das [[Faltungsprodukt]] zwischen Eingangssequenz und Impulsantwort:
 +
:$$\underline{x} = \underline{u} * \underline{g} \hspace{0.05cm}.$$
 +
* Die Faltungsoperation lässt sich mit dem Umweg über die [[$D$&ndash;Transformation]] umgehen.
 +
 
 +
''Hinweis:''
 +
* Die Aufgabe bezieht sich auf die [[letzte Seite]] des Kapitels Algebraische und polynomische Beschreibung.
  
[[Datei:|right|]]
 
  
  
 
===Fragebogen===
 
===Fragebogen===
 
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{Multiple-Choice
 
|type="[]"}
 
|type="[]"}
- Falsch
+
+ correct
+ Richtig
+
- false
 
 
  
 
{Input-Box Frage
 
{Input-Box Frage
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$xyz \ = \ ${ 5.4 3% } $ab$
 
 
 
 
 
 
 
</quiz>
 
</quiz>
  
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp;
'''2.'''
+
'''(2)'''&nbsp;
'''3.'''
+
'''(3)'''&nbsp;
'''4.'''
+
'''(4)'''&nbsp;
'''5.'''
+
'''(5)'''&nbsp;
'''6.'''
 
'''7.'''
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
 
+
[[Category:Aufgaben zu  Kanalcodierung|^3.2 Algebraische und polynomische Beschreibung^]]
[[Category:Aufgaben zu  Kanalcodierung|^3.2 Algebraische und polynomische Beschreibung
 
 
 
 
 
 
 
 
 
 
 
 
 
^]]
 

Version vom 30. November 2017, 12:23 Uhr

Rekursive Filter

Die obere der beiden dargestellten Schaltungen zeigt ein rekursives Filter zweiter Ordnung in allgemeiner Form. Mit

$$A(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} a_0 + a_1 \cdot D + a_2 \cdot D^2 \hspace{0.05cm},$$
$$B(D) \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 + b_1 \cdot D + b_2 \cdot D^2 $$

erhält man für die Übertragungsfunktion

$$G(D) = \frac{A(D)}{B(D)} = \frac{a_0 + a_1 \cdot D + a_2 \cdot D^2}{1 + b_1 \cdot D + b_2 \cdot D^2} \hspace{0.05cm}.$$

Zu beachten ist, dass sich alle Rechenoperationen auf ${\rm GF(2)}$ beziehen. Damit sind auch die Filterkoeffizienten $a_0, a_1, a_2, b_1$ und $b_2$ binär (entweder $0$ oder $1$).

Die untere Grafik zeigt das für die vorliegende Aufgabe spezifische Filter. Ein Filterkoeffizient ergibt sich zu $a_i = 1$, wenn die Verbindung durchgeschaltet ist $(0 &8804; i ≤ 2)$. Andernfalls ist $a_i = 0$. Die gleiche Systematik gilt für die Koeffizienten $b_1$ und $b_2$.

In den Teilaufgaben (1), ... , (3) sollen Sie für verschiedene Eingangssequenzen

  • $\underline{u} = (1, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, 0, \, ...)$,
  • $\underline{u} = (0, \, 1, \, 0, \, 1, \, 0, \, 0, \, 1, \, 1, \, ...)$,
  • $\underline{u} = (1, \, 1, \, 1, \, 0, \, 0, \, 0, \, 0, \, 0, \, ...)$


die jeweilige Ausgangssequenz $\underline{x}$ anhand der vorgegebenen Schaltung ermitteln. Es ist zu berücksichtigen:

  • Besteht die Eingangssequenz $\underline{u}$ aus einer Eins gefolgt von lauter Nullen, so bezeichnet man diese spezifische Ausgangssequenz $\underline{x}$ als die Impulsantwort $\underline{g}$, und es gilt:
$$\underline{g} \hspace{0.15cm} \circ\!\!-\!\!\!-^{\hspace{-0.25cm}D}\!\!\!-\!\!\bullet\hspace{0.15cm}{G}(D)\hspace{0.05cm}. $$
  • Andernfalls ergibt sich die Ausgangssequenz als das Faltungsprodukt zwischen Eingangssequenz und Impulsantwort:
$$\underline{x} = \underline{u} * \underline{g} \hspace{0.05cm}.$$
  • Die Faltungsoperation lässt sich mit dem Umweg über die [[$D$–Transformation]] umgehen.

Hinweis:

  • Die Aufgabe bezieht sich auf die Letzte Seite des Kapitels Algebraische und polynomische Beschreibung.


Fragebogen

1

Multiple-Choice

correct
false

2

Input-Box Frage

$xyz \ = \ $

$ab$


Musterlösung

(1)  (2)  (3)  (4)  (5)