Aufgaben:Aufgabe 3.4: Entropie für verschiedene Wahrscheinlichkeiten: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:P_ID2758__Inf_Z_3_3.png|right|]]
+
[[Datei:P_ID2758__Inf_Z_3_3.png|right|Vier Wahrscheinlichkeitsfunktionen mit <i>M</i> = 4]]
In der ersten Zeile der nebenstehenden Tabelle ist die mit „a” bezeichnete Wahrscheinlichkeitsfunktion angegeben. Für dieses $P_X(X)$ soll  soll in der Teilaufgabe (a) die Entropie  
+
In der ersten Zeile der nebenstehenden Tabelle ist die im Folgenden die mit &bdquo;a&rdquo; bezeichnete Wahrscheinlichkeitsfunktion angegeben. Für diese PMF $P_X(X) = [0.1, 0.2, 0.3, 0.4 ]$ soll  soll in der Teilaufgabe (1) die Entropie berechnet werden:
 
+
:$$H_{\rm a}(X) = {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{X}(X)}\right ]= - {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} {1}/{P_{X}(X)}\right ].$$
$$H_{\rm a}(X) = {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{X}(X)}\right ]$$
+
Da hier der Logarithmus zur Basis 2 verwendet wird, ist die Pseudo–Einheit „bit” anzufügen.
 
 
berechnet werden. Da hier der Logarithmus zur Basis 2 verwendet wird, ist die Pseudo–Einheit „bit” anzufügen.
 
  
 
In den weiteren Aufgaben sollen jeweils einige Wahrscheinlichkeiten variiert werden und zwar derart, dass sich jeweils die größtmögliche Entropie ergibt:
 
In den weiteren Aufgaben sollen jeweils einige Wahrscheinlichkeiten variiert werden und zwar derart, dass sich jeweils die größtmögliche Entropie ergibt:
  
:* Durch geeignete Variation von $p_3$ und $p_4$ kommt man zur maximalen Entropie $H_b(X)$ unter der Voraussetzung $p_1 = 0.1$ und $p_2 = 0.2$     $\Rightarrow$ Teilaufgabe (b).
+
* Durch geeignete Variation von $p_3$ und $p_4$ kommt man zur maximalen Entropie $H_{\rm b}(X)$ unter der Voraussetzung $p_1 = 0.1$ und $p_2 = 0.2$   &nbsp; &rArr; &nbsp; Teilaufgabe (2).
 
+
* Durch geeignete Variation von $p_2$ und $p_3$ kommt man zur maximalen Entropie $H_{\rm c}(X)$ unter der Voraussetzung $p_1 = 0.1$ und $p_4 = 0.4$ &nbsp; &rArr; &nbsp; Teilaufgabe (3).
:* Durch geeignete Variation von $p_2$ und $p_3$ kommt man zur maximalen Entropie $H_c(X)$ unter der Voraussetzung $p_1 = 0.1$ und $p_4 = 0.4$     $\Rightarrow$ Teilaufgabe (c).
+
* In der Teilaufgabe (4) sind alle vier Parameter zur Variation freigegeben, die entsprechend der maximalen Entropie &nbsp; &rArr; &nbsp; $H_{\rm max}(X)$  zu bestimmen sind.
 
:* In der Teilaufgabe (d) sind alle vier Parameter zur Variation freigegeben, die entsprechend der maximalen Entropie $\Rightarrow$  $H_{max}(X)$  zu bestimmen sind.
 
 
 
'''Hinweis:''' Die Aufgabe bezieht sich auf das [http://www.lntwww.de/Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgr%C3%B6%C3%9Fen Kapitel 3.1]
 
 
 
 
 
  
  
 +
''Hinweise:''
 +
*Die Aufgabe gehört zum  Kapitel [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen|Einige Vorbemerkungen zu den 2D-Zufallsgrößen]].
 +
*Insbesondere wird Bezug genommen auf die Seite [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen#Wahrscheinlichkeitsfunktion_und_Entropie|Wahrscheinlichkeitsfunktion undEntropie]].
 +
*Sollte die Eingabe des Zahlenwertes &bdquo;0&rdquo; erforderlich sein, so geben Sie bitte &bdquo;0.&rdquo; ein.
  
  
Zeile 28: Zeile 24:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Zu welcher Entropie führt $P_X(X) = [ 0.1, 0.2, 0.3, 0.4]$ ?
+
{Zu welcher Entropie führt die Wahrscheinlichkeitsfunktion $P_X(X) = [ 0.1, 0.2, 0.3, 0.4]$ ?
 
|type="{}"}
 
|type="{}"}
$H_a(X)$ = { 1.846 1% } $bit$  
+
$H_{\rm a}(X) \ = \ $ { 1.846 1% } $\ \rm bit$  
  
{Es gelte allgemein $P_X(X) = [ 0.1, 0.2, p_3, p_4]$. Welche Entropie erhält man, wenn $p_3$ und $p_4$ bestmöglich gewählt werden?
+
{Es gelte nun allgemein $P_X(X) = [ 0.1, 0.2, p_3, p_4]$. Welche Entropie erhält man, wenn $p_3$ und $p_4$ bestmöglich gewählt werden?
 
|type="{}"}
 
|type="{}"}
$H_b(X)$ = { 1.857 1% } $bit$
+
$H_{\rm b}(X) \ = \ $ { 1.857 1% } $\ \rm bit$
  
 
{ Nun gelte $P_X(X) = [ 0.1, p_2, p_3, 0.4]$. Welche Entropie erhält man, wenn $p_2$ und $p_3$ bestmöglich gewählt werden?
 
{ Nun gelte $P_X(X) = [ 0.1, p_2, p_3, 0.4]$. Welche Entropie erhält man, wenn $p_2$ und $p_3$ bestmöglich gewählt werden?
 
|type="{}"}
 
|type="{}"}
$H_c(X)$ = { 1.861 1% } $bit$
+
$H_{\rm c}(X) \ = \ $ { 1.861 1% } $\ \rm bit$
  
{ Welche Entropie erhält man, wenn ($p_1$, $p_2$,$p_3$  und $p_4$) bestmöglich gewählt werden Können ?
+
{ Welche Entropie erhält man, wenn alle Wahrscheinlichkeiten ($p_1$, $p_2$,$p_3$  und $p_4$) bestmöglich gewählt werden Können ?
 
|type="{}"}
 
|type="{}"}
$H_{max}(X)$ = { 2 1% } $bit$
+
$H_{\rm max}(X) \ = \ $ { 2 1% } $\ \rm bit$
 
 
 
 
  
  

Version vom 30. Mai 2017, 14:59 Uhr

Vier Wahrscheinlichkeitsfunktionen mit M = 4

In der ersten Zeile der nebenstehenden Tabelle ist die im Folgenden die mit „a” bezeichnete Wahrscheinlichkeitsfunktion angegeben. Für diese PMF $P_X(X) = [0.1, 0.2, 0.3, 0.4 ]$ soll soll in der Teilaufgabe (1) die Entropie berechnet werden:

$$H_{\rm a}(X) = {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} \frac{1}{P_{X}(X)}\right ]= - {\rm E} \left [ {\rm log}_2 \hspace{0.1cm} {1}/{P_{X}(X)}\right ].$$

Da hier der Logarithmus zur Basis 2 verwendet wird, ist die Pseudo–Einheit „bit” anzufügen.

In den weiteren Aufgaben sollen jeweils einige Wahrscheinlichkeiten variiert werden und zwar derart, dass sich jeweils die größtmögliche Entropie ergibt:

  • Durch geeignete Variation von $p_3$ und $p_4$ kommt man zur maximalen Entropie $H_{\rm b}(X)$ unter der Voraussetzung $p_1 = 0.1$ und $p_2 = 0.2$   ⇒   Teilaufgabe (2).
  • Durch geeignete Variation von $p_2$ und $p_3$ kommt man zur maximalen Entropie $H_{\rm c}(X)$ unter der Voraussetzung $p_1 = 0.1$ und $p_4 = 0.4$   ⇒   Teilaufgabe (3).
  • In der Teilaufgabe (4) sind alle vier Parameter zur Variation freigegeben, die entsprechend der maximalen Entropie   ⇒   $H_{\rm max}(X)$ zu bestimmen sind.


Hinweise:


Fragebogen

1

Zu welcher Entropie führt die Wahrscheinlichkeitsfunktion $P_X(X) = [ 0.1, 0.2, 0.3, 0.4]$ ?

$H_{\rm a}(X) \ = \ $

$\ \rm bit$

2

Es gelte nun allgemein $P_X(X) = [ 0.1, 0.2, p_3, p_4]$. Welche Entropie erhält man, wenn $p_3$ und $p_4$ bestmöglich gewählt werden?

$H_{\rm b}(X) \ = \ $

$\ \rm bit$

3

Nun gelte $P_X(X) = [ 0.1, p_2, p_3, 0.4]$. Welche Entropie erhält man, wenn $p_2$ und $p_3$ bestmöglich gewählt werden?

$H_{\rm c}(X) \ = \ $

$\ \rm bit$

4

Welche Entropie erhält man, wenn alle Wahrscheinlichkeiten ($p_1$, $p_2$,$p_3$ und $p_4$) bestmöglich gewählt werden Können ?

$H_{\rm max}(X) \ = \ $

$\ \rm bit$


Musterlösung

1. Mit $P_X(X) = [ 0.1, 0.2, 0.3, 0.4]$ erhält man für die Entropie:

$$H_{\rm a}(X) = 0.1 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.1} + 0.2 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.2} + 0.3 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.3} + 0.4 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.4} \hspace{0.15cm} \underline {= 1.846} \hspace{0.05cm}$$.

Hier (und bei den anderen Aufgaben) ist jeweils die Pseudo–Einheit „bit” anzufügen.

2. Die Entropie $H_b (X)$ sich als Summe zweier Anteile $H_{b1}(X)$ und $H_{b2}(X)$ darstellen, mit:

$$H_{\rm b1}(X) = 0.1 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.1} + 0.2 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.2} = 0.797 \hspace{0.05cm}$$

$$H_{\rm b2}(X) = p_3 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{p_3} + (0.7-p_3) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.7-p_3} \hspace{0.05cm}$$.

Die zweite Funktion ist für $p-3 = p_4 = 0.35$ Ein ähnlicher Zusammenhang hat sich bei der Binäre Entropiefunktion ergeben. Damit erhält man :

$$H_{\rm b2}(X) = 2 \cdot p_3 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{p_3} = 0.7 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.35} = 1.060$$

$$\Rightarrow \hspace{0.3cm} H_{\rm b}(X) = H_{\rm b1}(X) + H_{\rm b2}(X) = 0.797 + 1.060 \hspace{0.15cm} \underline {= 1.857} \hspace{0.05cm}$$.


3. Analog zur Aufgabe (b) ergibt sich mit $p_1 = 0.1$, $p_4 = 0.4$ das Maximum für $p_2 = p_3 = p_3 = 0.25$ :

$$H_{\rm c}(X) = 0.1 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.1} + 2 \cdot 0.25 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.25} + 0.4 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.4} \hspace{0.15cm} \underline {= 1.861} \hspace{0.05cm}$$.


4. Die maximale Entropie für den Symbolumfang $M=4$ ergibt sich bei gleichen Wahrscheinlichkeiten ( $p_1 = p_2 = p_3 = p_4 = 0.25$):

$$H_{\rm max}(X) = {\rm log}_2 \hspace{0.1cm} M \hspace{0.15cm} \underline {= 2} \hspace{0.05cm}$$.

Die Differenz der Entropien entsprechend (d) und (c) ergibt $\triangle H(X) = 0.139 bit$. Hierbei gilt:

$$\Delta H(X) = 1- 0.1 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.1} - 0.4 \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{0.4} \hspace{0.05cm}$$.

Mit der binären Entropiefunktion

$$H_{\rm bin}(p) = p \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{p} + (1-p) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1-p}$$

lässt sich hierfür auch schreiben:

$$\Delta H(X) = 0.5 \cdot \left [ 1- H_{\rm bin}(0.2) \right ] = 0.5 \cdot \left [ 1- 0.722 \right ] = 0.139 \hspace{0.05cm}$$.