Aufgaben:Aufgabe 3.3Z: Optimierung eines Koaxialkabelsystems: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(9 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 5: Zeile 5:
 
[[Datei:P_ID1409__Dig_Z_3_3.png|right|frame|Normierte Systemgrößen für verschiedene Grenzfrequenzen]]
 
[[Datei:P_ID1409__Dig_Z_3_3.png|right|frame|Normierte Systemgrößen für verschiedene Grenzfrequenzen]]
 
Wir betrachten ein redundanzfreies binäres Übertragungssystem mit folgenden Spezifikationen:
 
Wir betrachten ein redundanzfreies binäres Übertragungssystem mit folgenden Spezifikationen:
* Die Sendeimpulse sind NRZ–rechteckförmig und besitzen die Energie $E_{\rm B} = s_0^2 \cdot T$.
+
* Die Sendeimpulse sind NRZ–rechteckförmig und besitzen die Energie  $E_{\rm B} = s_0^2 \cdot T$.  
* Der Kanal ist ein Koaxialkabel mit der charakteristischen Kabeldämpfung $a_* = 40 \, {\rm dB}$.
 
* Es liegt AWGN–Rauschen mit der Rauschleistungsdichte $N_0 = 0.0001 \cdot E_{\rm B}$ vor.
 
* Der Empfängerfrequenzgang $H_{\rm E}(f)$ beinhaltet einen idealen Kanalentzerrer $H_{\rm K}^{\rm -1}(f)$ und einen Gaußtiefpass $H_{\rm G}(f)$ mit Grenzfrequenz $f_{\rm G}$ zur Rauschleistungsbegrenzung.
 
  
 +
* Der Kanal ist ein Koaxialkabel mit der charakteristischen Kabeldämpfung  $a_* = 40 \, {\rm dB}$.
  
Die Tabelle zeigt die Augenöffnung $\ddot{o}(T_{\rm D})$ sowie den Detektionsrauscheffektivwert $\sigma_{\rm d}$ – jeweils normiert auf die Sendeamplitude $s_0$ – für verschiedene Grenzfrequenzen $f_{\rm G}$. Die Grenzfrequenz ist so zu wählen, dass die ungünstigste Fehlerwahrscheinlichkeit möglichst klein ist, wobei folgende Definition gilt:
+
* Es liegt AWGN–Rauschen mit der Rauschleistungsdichte  $N_0 = 0.0001 \cdot E_{\rm B}$  vor.
 +
 +
* Der Empfängerfrequenzgang  $H_{\rm E}(f)$  beinhaltet einen idealen Kanalentzerrer  $H_{\rm K}^{\rm -1}(f)$  und einen Gaußtiefpass  $H_{\rm G}(f)$  mit Grenzfrequenz  $f_{\rm G}$  zur Rauschleistungsbegrenzung.
 +
 
 +
 
 +
Die Tabelle zeigt die Augenöffnung  $\ddot{o}(T_{\rm D})$  sowie den Detektionsrauscheffektivwert  $\sigma_{\rm d}$  – jeweils normiert auf die Sendeamplitude  $s_0$  – für verschiedene Grenzfrequenzen  $f_{\rm G}$. Die Grenzfrequenz ist so zu wählen, dass die ungünstigste Fehlerwahrscheinlichkeit möglichst klein ist, wobei folgende Definition gilt:
 
:$$p_{\rm U} = {\rm Q} \left( \frac{\ddot{o}(T_{\rm D})/2}{ \sigma_d}
 
:$$p_{\rm U} = {\rm Q} \left( \frac{\ddot{o}(T_{\rm D})/2}{ \sigma_d}
 
   \right) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm U} = {\rm Q} \left( \sqrt{\rho_{\rm U}}\right)$$
 
   \right) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm U} = {\rm Q} \left( \sqrt{\rho_{\rm U}}\right)$$
  
*Diese stellt eine obere Schranke für die mittlere Fehlerwahrscheinlichkeit $p_{\rm S}$ dar:    $p_{\rm S} \le p_{\rm U}$.  
+
*Diese Größe ist eine obere Schranke für die mittlere Fehlerwahrscheinlichkeit    $p_{\rm S} \le p_{\rm U}$.
*Für $f_{\rm G} \cdot T ≥ 0.4$ kann auch eine untere Schranke angegeben werden:    $p_{\rm S} \ge p_{\rm U}/4$.
+
 +
*Für  $f_{\rm G} \cdot T ≥ 0.4$  kann auch eine untere Schranke angegeben werden:    $p_{\rm S} \ge p_{\rm U}/4$.
 +
 
 +
 
  
 +
Hinweise:
 +
*Die Aufgabe gehört zum  Kapitel  [[Digitalsignal%C3%BCbertragung/Ber%C3%BCcksichtigung_von_Kanalverzerrungen_und_Entzerrung|"Berücksichtigung von Kanalverzerrungen und Entzerrung"]].
  
''Hinweise:''
+
* Verwenden Sie zur numerischen Auswertung der Q–Funktion das Interaktionsmodul  [[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|Komplementäre Gaußsche Fehlerfunktionen]].
*Die Aufgabe gehört zum  Kapitel [[Digitalsignal%C3%BCbertragung/Ber%C3%BCcksichtigung_von_Kanalverzerrungen_und_Entzerrung|Berücksichtigung von Kanalverzerrungen und Entzerrung]].
+
* Verwenden Sie zur numerischen Auswertung der Q–Funktion das Interaktionsmodul [[Komplementäre Gaußsche Fehlerfunktionen]].
 
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
  
  
Zeile 37: Zeile 43:
 
$\hspace{4.07cm}p_{\rm U}  \  = \ $ { 3.1 3% } $\ \rm \%$
 
$\hspace{4.07cm}p_{\rm U}  \  = \ $ { 3.1 3% } $\ \rm \%$
  
{Auf welchen Wert müsste man die Rauschleistungsdichte $N_0$ (bezogen auf die Signalenergie) verringern, damit $p_{\rm U}$ nicht größer ist als $10^{\rm -6}$?
+
{Auf welchen Wert müsste man die Rauschleistungsdichte  $N_0$  $($bezogen auf die Signalenergie$)$  verringern,  damit  $p_{\rm U}$  nicht größer ist als  $10^{\rm -6}$?
 
|type="{}"}
 
|type="{}"}
 
$N_0/E_{\rm B} \  = \ $ { 1.53 3% } $\ \cdot 10^{\rm -5}$
 
$N_0/E_{\rm B} \  = \ $ { 1.53 3% } $\ \cdot 10^{\rm -5}$
  
{Geben Sie für den unter (3) getroffenen Annahmen eine untere und eine obere Schranke für die mittlere Fehlerwahrscheinlichkeit $p_{\rm S}$ an.
+
{Geben Sie für den unter  '''(3)'''  getroffenen Annahmen eine untere und eine obere Schranke für die mittlere Fehlerwahrscheinlichkeit  $p_{\rm S}$  an.
 
|type="{}"}
 
|type="{}"}
 
$p_\text{ S, min}\hspace{0.02cm} \  = \ $ { 0.25 3% } $\ \cdot 10^{\rm -6}$
 
$p_\text{ S, min}\hspace{0.02cm} \  = \ $ { 0.25 3% } $\ \cdot 10^{\rm -6}$
Zeile 49: Zeile 55:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  Für die Optimierung genügt es , den Quotienten $\ddot{o}(T_{\rm D})/\sigma_d$ zu maximieren. Dieser ist von den in der Tabelle gegebenen Werten für die Grenzfrequenz $f_{\rm G, opt} \cdot T = \underline {= 0.4}$ mit $0.735/0.197 \approx 3.73$ maximal. Zum Vergleich: Für $f_{\rm G} \cdot T = 0.3$ ergibt sich aufgrund der kleineren Augenöffnung $0.192/0.094 \approx 2.04$ und für $f_{\rm G} \cdot T = 0.5$ ist der Quotient ebenfalls kleiner als beim Optimum: $1.159/0.379 \approx 3.05$.
+
'''(1)'''  Für die Optimierung genügt es,  den Quotienten  $\ddot{o}(T_{\rm D})/\sigma_d$  zu maximieren:
 +
*Dieser ist von den in der Tabelle gegebenen Werten für die Grenzfrequenz  $f_{\rm G, opt} \cdot T \underline {= 0.4}$  mit   $0.735/0.197 \approx 3.73$   maximal.  
 +
*Zum Vergleich:   Für  $f_{\rm G} \cdot T = 0.3$  ergibt sich aufgrund der kleineren Augenöffnung  $0.192/0.094 \approx 2.04$. 
 +
*Für  $f_{\rm G} \cdot T = 0.5$  ist der Quotient ebenfalls kleiner als beim Optimum:   $1.159/0.379 \approx 3.05$.
 +
*Eine noch größere Grenzfrequenz führt zu einem sehr großen Störeffektivwert,  ohne dass gleichzeitig die vertikale Augenöffnung in gleicher Weise vergrößert wird.
  
Eine noch größere Grenzfrequenz führt zu einem sehr großen Störeffektivwert, ohne dass gleichzeitig die vertikale Augenöffnung in gleicher Weise vergrößert wird.
 
  
  
'''(2)'''  Mit dem Ergebnis aus 1) erhält man weiter:
+
'''(2)'''  Mit dem Ergebnis aus  '''(1)'''  erhält man weiter:
 
:$$\rho_{\rm U} = \left ( {3.73}/{2} \right )^2 \approx 3.48 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
:$$\rho_{\rm U} = \left ( {3.73}/{2} \right )^2 \approx 3.48 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}
 
  10 \cdot {\rm
 
  10 \cdot {\rm
lg}\hspace{0.1cm}\rho_{\rm U} \hspace{0.15cm}\underline { = 5.41\,{\rm dB}}$$
+
lg}\hspace{0.1cm}\rho_{\rm U} \hspace{0.15cm}\underline { = 5.41\,{\rm dB}}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_{\rm U} = {\rm Q}\left (
:$$\Rightarrow \hspace{0.3cm} p_{\rm U} = {\rm Q}\left (
 
 
{3.73}/{2} \right) \hspace{0.15cm}\underline {\approx 0.031} \hspace{0.05cm}.$$
 
{3.73}/{2} \right) \hspace{0.15cm}\underline {\approx 0.031} \hspace{0.05cm}.$$
  
  
'''(3)'''  Mit dem gegebenen $10 \cdot {\rm lg} \, E_{\rm B}/N_0 = 40 \ \rm dB$, also $E_{\rm B}/N_0 = 10^4$ hat sich der ungünstigste Störabstand zu $10 \cdot {\rm lg} \, \rho_{\rm U} \approx 5.41 \, {\rm dB}$ ergeben. Für die ungünstigste Fehlerwahrscheinlichkeit $p_{\rm U} = 10^{\rm -6}$ muss aber $10 \cdot {\rm lg} \, \rho_{\rm U} > 13.55 \, {\rm dB}$ sein. Dies erreicht man, indem man den Quotienten $E_{\rm B}/N_0$ entsprechend erhöht:
+
'''(3)'''  Mit dem gegebenen  $10 \cdot {\rm lg} \, E_{\rm B}/N_0 = 40 \ \rm dB$,  also  $E_{\rm B}/N_0 = 10^4$  hat sich der ungünstigste Störabstand  $10 \cdot {\rm lg} \, \rho_{\rm U} \approx 5.41 \, {\rm dB}$  ergeben.  
 +
*Für die ungünstigste Fehlerwahrscheinlichkeit $p_{\rm U} = 10^{\rm -6}$ muss aber $10 \cdot {\rm lg} \, \rho_{\rm U} > 13.55 \, {\rm dB}$ sein.  
 +
*Dies erreicht man,  indem man den Quotienten  $E_{\rm B}/N_0$ entsprechend  erhöht:
 
:$$10 \cdot {\rm
 
:$$10 \cdot {\rm
 
lg}\hspace{0.1cm}{E_{\rm B}}/{N_0} = 40\,{\rm dB}
 
lg}\hspace{0.1cm}{E_{\rm B}}/{N_0} = 40\,{\rm dB}
 
\hspace{0.1cm}+\hspace{0.1cm}13.55\,{\rm dB}
 
\hspace{0.1cm}+\hspace{0.1cm}13.55\,{\rm dB}
\hspace{0.1cm}-\hspace{0.1cm}5.41\,{\rm dB}= 48.14\,{\rm dB}$$
+
\hspace{0.1cm}-\hspace{0.1cm}5.41\,{\rm dB}= 48.14\,{\rm dB}\hspace{0.3cm}
:$$\Rightarrow
+
\Rightarrow
 
\hspace{0.3cm} {E_{\rm B}}/{N_0} = 10^{4.814}\approx 65163
 
\hspace{0.3cm} {E_{\rm B}}/{N_0} = 10^{4.814}\approx 65163
 
\hspace{0.3cm}\Rightarrow \hspace{0.3cm}  {N_0}/{E_{\rm B}}\hspace{0.15cm}\underline {  =
 
\hspace{0.3cm}\Rightarrow \hspace{0.3cm}  {N_0}/{E_{\rm B}}\hspace{0.15cm}\underline {  =
Zeile 73: Zeile 83:
  
  
'''(4)'''  Die obere Schranke für $p_{\rm S}$ ist gleich der ungünstigsten Fehlerwahrscheinlichkeit $p_{\rm U} = \underline {10^{\rm -6}}$. Die untere Schranke liegt bei $\underline {0.25 \cdot 10^{\rm -6}}$, ist also um den Faktor 4 kleiner.
+
'''(4)'''   
 +
*Die obere Schranke für $p_{\rm S}$ ist gleich der ungünstigsten Fehlerwahrscheinlichkeit $p_{\rm U} = \underline {10^{\rm -6}}$.  
 +
*Die untere Schranke liegt bei $\underline {0.25 \cdot 10^{\rm -6}}$, ist also um den Faktor 4 kleiner.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
 
[[Category:Aufgaben zu Digitalsignalübertragung|^3.3 Kanalverzerrungen und Entzerrung^]]
 
[[Category:Aufgaben zu Digitalsignalübertragung|^3.3 Kanalverzerrungen und Entzerrung^]]

Aktuelle Version vom 19. Juni 2022, 14:54 Uhr

Normierte Systemgrößen für verschiedene Grenzfrequenzen

Wir betrachten ein redundanzfreies binäres Übertragungssystem mit folgenden Spezifikationen:

  • Die Sendeimpulse sind NRZ–rechteckförmig und besitzen die Energie  $E_{\rm B} = s_0^2 \cdot T$.
  • Der Kanal ist ein Koaxialkabel mit der charakteristischen Kabeldämpfung  $a_* = 40 \, {\rm dB}$.
  • Es liegt AWGN–Rauschen mit der Rauschleistungsdichte  $N_0 = 0.0001 \cdot E_{\rm B}$  vor.
  • Der Empfängerfrequenzgang  $H_{\rm E}(f)$  beinhaltet einen idealen Kanalentzerrer  $H_{\rm K}^{\rm -1}(f)$  und einen Gaußtiefpass  $H_{\rm G}(f)$  mit Grenzfrequenz  $f_{\rm G}$  zur Rauschleistungsbegrenzung.


Die Tabelle zeigt die Augenöffnung  $\ddot{o}(T_{\rm D})$  sowie den Detektionsrauscheffektivwert  $\sigma_{\rm d}$  – jeweils normiert auf die Sendeamplitude  $s_0$  – für verschiedene Grenzfrequenzen  $f_{\rm G}$. Die Grenzfrequenz ist so zu wählen, dass die ungünstigste Fehlerwahrscheinlichkeit möglichst klein ist, wobei folgende Definition gilt:

$$p_{\rm U} = {\rm Q} \left( \frac{\ddot{o}(T_{\rm D})/2}{ \sigma_d} \right) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} p_{\rm U} = {\rm Q} \left( \sqrt{\rho_{\rm U}}\right)$$
  • Diese Größe ist eine obere Schranke für die mittlere Fehlerwahrscheinlichkeit   $p_{\rm S} \le p_{\rm U}$.
  • Für  $f_{\rm G} \cdot T ≥ 0.4$  kann auch eine untere Schranke angegeben werden:   $p_{\rm S} \ge p_{\rm U}/4$.


Hinweise:



Fragebogen

1

Bestimmen Sie innerhalb des vorgegebenen Rasters die optimale Grenzfrequenz hinsichtlich des Kriteriums „ungünstigste Fehlerwahrscheinlichkeit”.

$f_\text{G, opt} \cdot T \ = \ $

2

Welche Werte ergeben sich damit für den ungünstigsten Störabstand und die ungünstigste Fehlerwahrscheinlichkeit?

$f_\text{G} = \text{G, opt:}\hspace{0.4cm} 10 \cdot {\rm lg} \, \rho_{\rm U} \ = \ $

${\ \rm dB}$
$\hspace{4.07cm}p_{\rm U} \ = \ $

$\ \rm \%$

3

Auf welchen Wert müsste man die Rauschleistungsdichte  $N_0$  $($bezogen auf die Signalenergie$)$  verringern,  damit  $p_{\rm U}$  nicht größer ist als  $10^{\rm -6}$?

$N_0/E_{\rm B} \ = \ $

$\ \cdot 10^{\rm -5}$

4

Geben Sie für den unter  (3)  getroffenen Annahmen eine untere und eine obere Schranke für die mittlere Fehlerwahrscheinlichkeit  $p_{\rm S}$  an.

$p_\text{ S, min}\hspace{0.02cm} \ = \ $

$\ \cdot 10^{\rm -6}$
$p_\text{ S, max} \ = \ $

$\ \cdot 10^{\rm -6}$


Musterlösung

(1)  Für die Optimierung genügt es,  den Quotienten  $\ddot{o}(T_{\rm D})/\sigma_d$  zu maximieren:

  • Dieser ist von den in der Tabelle gegebenen Werten für die Grenzfrequenz  $f_{\rm G, opt} \cdot T \underline {= 0.4}$  mit   $0.735/0.197 \approx 3.73$   maximal.
  • Zum Vergleich:   Für  $f_{\rm G} \cdot T = 0.3$  ergibt sich aufgrund der kleineren Augenöffnung  $0.192/0.094 \approx 2.04$. 
  • Für  $f_{\rm G} \cdot T = 0.5$  ist der Quotient ebenfalls kleiner als beim Optimum:   $1.159/0.379 \approx 3.05$.
  • Eine noch größere Grenzfrequenz führt zu einem sehr großen Störeffektivwert,  ohne dass gleichzeitig die vertikale Augenöffnung in gleicher Weise vergrößert wird.


(2)  Mit dem Ergebnis aus  (1)  erhält man weiter:

$$\rho_{\rm U} = \left ( {3.73}/{2} \right )^2 \approx 3.48 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.1cm}\rho_{\rm U} \hspace{0.15cm}\underline { = 5.41\,{\rm dB}}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_{\rm U} = {\rm Q}\left ( {3.73}/{2} \right) \hspace{0.15cm}\underline {\approx 0.031} \hspace{0.05cm}.$$


(3)  Mit dem gegebenen  $10 \cdot {\rm lg} \, E_{\rm B}/N_0 = 40 \ \rm dB$,  also  $E_{\rm B}/N_0 = 10^4$  hat sich der ungünstigste Störabstand  $10 \cdot {\rm lg} \, \rho_{\rm U} \approx 5.41 \, {\rm dB}$  ergeben.

  • Für die ungünstigste Fehlerwahrscheinlichkeit $p_{\rm U} = 10^{\rm -6}$ muss aber $10 \cdot {\rm lg} \, \rho_{\rm U} > 13.55 \, {\rm dB}$ sein.
  • Dies erreicht man,  indem man den Quotienten  $E_{\rm B}/N_0$ entsprechend  erhöht:
$$10 \cdot {\rm lg}\hspace{0.1cm}{E_{\rm B}}/{N_0} = 40\,{\rm dB} \hspace{0.1cm}+\hspace{0.1cm}13.55\,{\rm dB} \hspace{0.1cm}-\hspace{0.1cm}5.41\,{\rm dB}= 48.14\,{\rm dB}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {E_{\rm B}}/{N_0} = 10^{4.814}\approx 65163 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} {N_0}/{E_{\rm B}}\hspace{0.15cm}\underline { = 1.53 \cdot 10^{-5}} \hspace{0.05cm}.$$


(4) 

  • Die obere Schranke für $p_{\rm S}$ ist gleich der ungünstigsten Fehlerwahrscheinlichkeit $p_{\rm U} = \underline {10^{\rm -6}}$.
  • Die untere Schranke liegt bei $\underline {0.25 \cdot 10^{\rm -6}}$, ist also um den Faktor 4 kleiner.