Aufgaben:Aufgabe 3.3: Rauschen bei Kanalentzerrung: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 8: Zeile 8:
 
\frac{f^2}{(2f_{\rm G})^2})$$
 
\frac{f^2}{(2f_{\rm G})^2})$$
  
mit der normierten Grenzfrequenz $f_G \cdot T = 0.35$ verwendet, so dass beide Systeme mit $\ddot{o}(T_D = 0) = 0.478 \cdot s_0$ auch die gleiche Augenöffnung aufweisen. Die pro Bit aufgewendete Sendeenergie $E_B = s_0^2 \cdot T$ ist um den Faktor $10^9$ größer als die Rauschleistungsdichte $N_0$ ⇒ $10\cdot lg \, E_B/N_0 = 90 \, dB$.
+
mit der normierten Grenzfrequenz $f_G \cdot T = 0.35$ verwendet, so dass beide Systeme mit $\ddot{o}(T_D = 0) = 0.478 \cdot s_0$ auch die gleiche Augenöffnung aufweisen. Die pro Bit aufgewendete Sendeenergie $E_B = s_0^2 \cdot T$ ist um den Faktor $10^9$ größer als die Rauschleistungsdichte $N_0$ ⇒ $10\cdot {\rm lg} \, E_B/N_0 = 90 \, {\rm dB}$.
 
Die beiden Systeme unterscheiden sich wie folgt.  
 
Die beiden Systeme unterscheiden sich wie folgt.  
 
* Der Kanalfrequenzgang von System A ist frequenzunabhängig: $H_K(f) = \alpha$. Für das Empfangsfilter ist demnach $H_E(f) = H_G(f)/\alpha$ anzusetzen, so dass für die Detektionsrauschleistung gilt:
 
* Der Kanalfrequenzgang von System A ist frequenzunabhängig: $H_K(f) = \alpha$. Für das Empfangsfilter ist demnach $H_E(f) = H_G(f)/\alpha$ anzusetzen, so dass für die Detektionsrauschleistung gilt:
Zeile 14: Zeile 14:
 
|H_{\rm E}(f)|^2 \,{\rm d} f = \frac{N_0 \cdot f_{\rm G}}{\sqrt{2}
 
|H_{\rm E}(f)|^2 \,{\rm d} f = \frac{N_0 \cdot f_{\rm G}}{\sqrt{2}
 
\cdot \alpha^2} \hspace{0.05cm}.$$
 
\cdot \alpha^2} \hspace{0.05cm}.$$
* Dagegen ist für System B ein Koaxialkabel mit der charakteristischen Dämpfung (bei der halben Bitrate) $a_* = 80 \, dB$ (bzw. $9.2 \, Np) vorausgesetzt, so dass für den Betragsfrequenzgang gilt:
+
* Dagegen ist für System B ein Koaxialkabel mit der charakteristischen Dämpfung (bei der halben Bitrate) $a_* = 80 \, {\rm dB}$ (bzw. $9.2 \, {\rm Np}$) vorausgesetzt, so dass für den Betragsfrequenzgang gilt:
 
:$$|H_{\rm K}(f)| = {\rm exp}(- 9.2 \hspace{0.05cm} \cdot
 
:$$|H_{\rm K}(f)| = {\rm exp}(- 9.2 \hspace{0.05cm} \cdot
 
\hspace{0.05cm}\sqrt{2 f T})\hspace{0.05cm}.$$
 
\hspace{0.05cm}\sqrt{2 f T})\hspace{0.05cm}.$$
Zeile 29: Zeile 29:
 
   \right) \hspace{0.2cm}{\rm mit} \hspace{0.2cm} \rho_{\rm U} = \frac{[\ddot{o}(T_{\rm D})/2]^2}{ \sigma_d^2}$$
 
   \right) \hspace{0.2cm}{\rm mit} \hspace{0.2cm} \rho_{\rm U} = \frac{[\ddot{o}(T_{\rm D})/2]^2}{ \sigma_d^2}$$
  
bestimmt. Die Messung ergab $p_U = 4 \cdot 10^_{\rm -8}$, was dem Störabstand $10 \cdot lg \, \rho_U = 14.8 \, dB$ entspricht.
+
bestimmt. Die Messung ergab $p_U = 4 \cdot 10^_{\rm -8}$, was dem Störabstand $10 \cdot lg \, \rho_U = 14.8 \, {\rm dB}$ entspricht.
 +
 
 +
 
  
 
''Hinweis:'' Die Aufgabe bezieht sich auf das [[Digitalsignal%C3%BCbertragung/Ber%C3%BCcksichtigung_von_Kanalverzerrungen_und_Entzerrung|Kapitel 3.3]].
 
''Hinweis:'' Die Aufgabe bezieht sich auf das [[Digitalsignal%C3%BCbertragung/Ber%C3%BCcksichtigung_von_Kanalverzerrungen_und_Entzerrung|Kapitel 3.3]].

Version vom 24. Oktober 2017, 11:54 Uhr

P ID1407 Dig A 3 3.png

Wir betrachten zwei unterschiedliche Systemvarianten, die beide NRZ–Rechteck–Sendeimpulse benutzen und durch AWGN–Rauschen beeinträchtigt werden. In beiden Fällen wird zur Rauschleistungsbegrenzung ein Gaußtiefpass

$$H_{\rm G}(f) = {\rm exp}(- \pi \cdot \frac{f^2}{(2f_{\rm G})^2})$$

mit der normierten Grenzfrequenz $f_G \cdot T = 0.35$ verwendet, so dass beide Systeme mit $\ddot{o}(T_D = 0) = 0.478 \cdot s_0$ auch die gleiche Augenöffnung aufweisen. Die pro Bit aufgewendete Sendeenergie $E_B = s_0^2 \cdot T$ ist um den Faktor $10^9$ größer als die Rauschleistungsdichte $N_0$ ⇒ $10\cdot {\rm lg} \, E_B/N_0 = 90 \, {\rm dB}$. Die beiden Systeme unterscheiden sich wie folgt.

  • Der Kanalfrequenzgang von System A ist frequenzunabhängig: $H_K(f) = \alpha$. Für das Empfangsfilter ist demnach $H_E(f) = H_G(f)/\alpha$ anzusetzen, so dass für die Detektionsrauschleistung gilt:
$$\sigma_d^2 = {N_0}/{2} \cdot \int_{-\infty}^{+\infty} |H_{\rm E}(f)|^2 \,{\rm d} f = \frac{N_0 \cdot f_{\rm G}}{\sqrt{2} \cdot \alpha^2} \hspace{0.05cm}.$$
  • Dagegen ist für System B ein Koaxialkabel mit der charakteristischen Dämpfung (bei der halben Bitrate) $a_* = 80 \, {\rm dB}$ (bzw. $9.2 \, {\rm Np}$) vorausgesetzt, so dass für den Betragsfrequenzgang gilt:
$$|H_{\rm K}(f)| = {\rm exp}(- 9.2 \hspace{0.05cm} \cdot \hspace{0.05cm}\sqrt{2 f T})\hspace{0.05cm}.$$
  • Somit lautet die Gleichung für die Rauschleistungsdichte vor dem Entscheider (mit $f_G \cdot T = 0.35$):
$${\it \Phi}_{d{\rm N}}(f) = {N_0}/{2} \cdot \frac{|H_{\rm G }(f)|^2}{|H_{\rm K}(f)|^2} = {N_0}/{2} \cdot {\rm exp}\left [18.4 \cdot \sqrt{2 f T} - 2\pi \cdot \frac{(f \cdot T)^2}{(2 \cdot 0.35)^2} \right ] \hspace{0.05cm}.$$

Dieser Funktionsverlauf ist in obiger Grafik rot dargestellt. Die Rauchleistungsdichte für das System A ist blau gezeichnet.

Für das System B wurde messtechnisch die ungünstigste Fehlerwahrscheinlichkeit

$$p_{\rm U} = {\rm Q} \left( \sqrt{\rho_{\rm U}} \right) \hspace{0.2cm}{\rm mit} \hspace{0.2cm} \rho_{\rm U} = \frac{[\ddot{o}(T_{\rm D})/2]^2}{ \sigma_d^2}$$

bestimmt. Die Messung ergab $p_U = 4 \cdot 10^_{\rm -8}$, was dem Störabstand $10 \cdot lg \, \rho_U = 14.8 \, {\rm dB}$ entspricht.


Hinweis: Die Aufgabe bezieht sich auf das Kapitel 3.3.


Fragebogen

1

Multiple-Choice Frage

Falsch
Richtig

2

Input-Box Frage

$\alpha$ =


Musterlösung

(1)  (2)  (3)  (4)  (5)  (6)