Aufgaben:Aufgabe 3.3: Entropie von Ternärgrößen: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 4: Zeile 4:
  
 
[[Datei:P_ID2754__Inf_A_3_3.png|right|Vorgegebene Entropiefunktionen]]
 
[[Datei:P_ID2754__Inf_A_3_3.png|right|Vorgegebene Entropiefunktionen]]
Rechts sehen Sie die Entropiefunktionen $H_{\rm R}(p)$, H_{\rm B}(p)$ und H_{\rm G}(p)$, wobei „R” für „Rot” steht, „B” für „Blau” und „G” für „Grün” . Die Wahrscheinlichkeitsfunktionen lauten für alle Zufallsgrößen:
+
Rechts sehen Sie die Entropiefunktionen $H_{\rm R}(p)$, $H_{\rm B}(p)$ und $H_{\rm G}(p)$, wobei „R” für „Rot” steht, „B” für „Blau” und „G” für „Grün” . Die Wahrscheinlichkeitsfunktionen lauten für alle Zufallsgrößen:
 
:$$P_X(X) = [\hspace{0.05cm}p_1\hspace{0.05cm}, p_2\hspace{0.05cm}, p_3\hspace{0.05cm}]\hspace{0.3cm}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} |X| = 3\hspace{0.05cm}.$$
 
:$$P_X(X) = [\hspace{0.05cm}p_1\hspace{0.05cm}, p_2\hspace{0.05cm}, p_3\hspace{0.05cm}]\hspace{0.3cm}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} |X| = 3\hspace{0.05cm}.$$
 
Es gilt der Zusammenhang $p_1 = p$ und $p_2 = 1 - p_3- p$.
 
Es gilt der Zusammenhang $p_1 = p$ und $p_2 = 1 - p_3- p$.
Zeile 13: Zeile 13:
 
:$$P_X(X) = [\hspace{0.05cm}p_1\hspace{0.05cm}, \hspace{0.05cm} p_2\hspace{0.05cm},\hspace{0.05cm} ...\hspace{0.1cm} ,\hspace{0.05cm} p_{\mu}\hspace{0.05cm}, \hspace{0.05cm}...\hspace{0.1cm} , \hspace{0.05cm} p_{M}\hspace{0.05cm}]\hspace{0.05cm}.$$
 
:$$P_X(X) = [\hspace{0.05cm}p_1\hspace{0.05cm}, \hspace{0.05cm} p_2\hspace{0.05cm},\hspace{0.05cm} ...\hspace{0.1cm} ,\hspace{0.05cm} p_{\mu}\hspace{0.05cm}, \hspace{0.05cm}...\hspace{0.1cm} , \hspace{0.05cm} p_{M}\hspace{0.05cm}]\hspace{0.05cm}.$$
 
Die Entropie (Unsicherheit) dieser Zufallsgröße berechnet sich entsprechend der Gleichung
 
Die Entropie (Unsicherheit) dieser Zufallsgröße berechnet sich entsprechend der Gleichung
:$$H(X) = {\rm E} \left [\log_2 \hspace{0.1cm} {1}/{P_X(X)} \right ]\hspace{0.05cm},$$
+
:$$H(X) = {\rm E} \left [\log_2 \hspace{0.05cm} {1}/{P_X(X)} \right ]\hspace{0.05cm},$$
und liegt stets im Bereich $0 \le H(X)  \le  \log_2 \hspace{0.1cm}  |X|$.  
+
und liegt stets im Bereich $0 \le H(X)  \le  \log_2 \hspace{0.05cm}  |X|$.  
Die untere Schranke <i>H</i>(<i>X</i>) = 0 ergibt sich, wenn eine beliebige Wahrscheinlichkeit <i>p<sub>&mu;</sub></i> = 1 ist und alle anderen 0 sind. Die obere Schranke soll hier wie in [Kra13] hergeleitet werden:
 
  
:* Durch Erweiterung obiger Gleichung um |<i>X</i>| in Zähler und Nenner erhält man unter Verwendung von log<sub>2</sub>(<i>x</i>) = ln(<i>x</i>)/ln(2):
+
Die untere Schranke $H(X) = 0$ ergibt sich, wenn eine beliebige Wahrscheinlichkeit $p_\mu = 1$ ist und alle anderen $0$ sind. Die obere Schranke soll hier wie in der Vorlesung &bdquo;Information Theory&rdquo; von [[Biografien_und_Bibliografien/Lehrstuhlinhaber_des_LNT#Prof._Dr._sc._techn._Gerhard_Kramer_.28seit_2010.29|Gerhard Kramer]] an der TU München hergeleitet werden:
 +
[[Datei:P_ID2755__Inf_A_3_3_B_neu.png|right|Obere Abschätzung für den natürlichen Logarithmus]]
 +
* Durch Erweiterung obiger Gleichung um $X|$ in Zähler und Nenner erhält man unter Verwendung von $\log_2 \hspace{0.05cm}x= \ln(x)/ln(2)$:
 
:$$H(X) = \frac{1}{{\rm ln}(2)}\cdot {\rm E} \left [{\rm ln} \hspace{0.1cm} \frac{1}{|X| \cdot P_X(X)} \right ] + {\rm log}_2 \hspace{0.1cm}|X| \hspace{0.05cm}.$$
 
:$$H(X) = \frac{1}{{\rm ln}(2)}\cdot {\rm E} \left [{\rm ln} \hspace{0.1cm} \frac{1}{|X| \cdot P_X(X)} \right ] + {\rm log}_2 \hspace{0.1cm}|X| \hspace{0.05cm}.$$
:* Wie aus nachfolgender Grafik hervorgeht, gilt die Abschätzung ln(<i>x</i>) &#8804; <i>x</i> &ndash; 1 mit der Identität für <i>x</i>&nbsp;=&nbsp;1. Somit kann geschrieben werden:
+
* Wie aus nebenstehender Grafik hervorgeht, gilt die Abschätzung $\ln(x) \le x-1$ mit der Identität für $x=1$. Somit kann geschrieben werden:
 
:$$H(X) \le \frac{1}{{\rm ln}(2)}\cdot {\rm E} \left [\frac{1}{|X| \cdot P_X(X)} -1 \right ] + {\rm log}_2 \hspace{0.1cm}|X| \hspace{0.05cm}.$$
 
:$$H(X) \le \frac{1}{{\rm ln}(2)}\cdot {\rm E} \left [\frac{1}{|X| \cdot P_X(X)} -1 \right ] + {\rm log}_2 \hspace{0.1cm}|X| \hspace{0.05cm}.$$
[[Datei:P_ID2755__Inf_A_3_3_B_neu.png|right|Obere Abschätzung für den natürlichen Logarithmus]]
+
* In [[Aufgaben:3.2_Erwartungswertberechnungen|Aufgabe 3.2]] wurde für den Fall$p_\mu \ne 0$ für alle $\mu$ der Erwartungswert ${\rm E} [\log_2 \hspace{0.05cm} {1}/{P_X(X)}] =|X|$ berechnet. Damit verschwindet der erste Term und man erhält das bekannte Ergebnis:
:* In Aufgabe A3.2 wurde für den Fall, dass <i>p<sub>&mu;</sub></i> &ne; 0 für alle <i>&mu;</i> gilt, der Erwartungswert E[1/<i>P<sub>X</sub></i>(<i>X</i>)] zu |<i>X</i>| berechnet. Damit verschwindet der erste Term und man erhält das bekannte Ergebnis:
 
 
:$$H(X) \le {\rm log}_2 \hspace{0.1cm}|X| \hspace{0.05cm}.$$
 
:$$H(X) \le {\rm log}_2 \hspace{0.1cm}|X| \hspace{0.05cm}.$$
  
 
''Hinweise:''  
 
''Hinweise:''  
 
*Die Aufgabe gehört zum  Kapitel [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen|Einige Vorbemerkungen zu den 2D-Zufallsgrößen]].
 
*Die Aufgabe gehört zum  Kapitel [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen|Einige Vorbemerkungen zu den 2D-Zufallsgrößen]].
*Ausgegangen wird hier von der gleichen Konstellation wie in [[http://www.lntwww.de/Aufgaben:3.02_Erwartungswertberechnungen|Aufgabe 3.2]].
+
*Insbesondere wird Bezug genommen auf die Seite [[Informationstheorie/Einige_Vorbemerkungen_zu_zweidimensionalen_Zufallsgrößen#Wahrscheinlichkeitsfunktion_und_Entropie|Wahrscheinlichkeitsfunktion undEntropie]].
*Dort wurde die Zufallsgrößen  $Y = \{ 0, 1, 2, 3 \}$  betrachtet, allerdings mit dem Zusatz ${\rm Pr}(Y = 3) = 0$.  
+
*Ausgegangen wird hier von der gleichen Konstellation wie in [[Aufgaben:3.02_Erwartungswertberechnungen|Aufgabe 3.2]].
*Die so erzwungene Eigenschaft $|X| = |Y|$  war in der vorherigen Aufgabe zur formalen Berechnung des Erwartungswertes ${\rm E}[P_X(X)]$ von Vorteil.
+
*Die Gleichung der binären Entropiefunktion lautet:
 
+
:$$H_{\rm bin}(p) =  p \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{p} +  
<b>Hinweis:</b> Die Aufgabe gehört zu Kapitel 3.1. Es wird auf die binäre Entropiefunktion Bezug genommen:
 
:$$H_{{\rm bin}}(p) =  p \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{p} +  
 
 
  (1-p) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1-p} \hspace{0.05cm}.$$
 
  (1-p) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1-p} \hspace{0.05cm}.$$
  
Zeile 39: Zeile 37:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Aussagen gelten für die rote Entropiefunktion <i>H</i><sub>R</sub>(<i>p</i>)?
+
{Welche Aussagen gelten für die rote Entropiefunktion $H_{\rm R}(p)$?
 
|type="[]"}
 
|type="[]"}
+ <i>H</i><sub>R</sub>(<i>p</i>) ergibt sich z.B. mit <i>p</i><sub>3</sub> = 0, <i>p</i><sub>1</sub> = <i>p</i>, <i>p</i><sub>2</sub> = 1 &ndash; <i>p</i>.
+
+ $H_{\rm R}(p)$ ergibt sich z.B. mit $p_1 = p$, $p_2 = 1- p$  und $p_3 = 0$.
+ <i>H</i><sub>R</sub>(<i>p</i>) ist identisch mit der binären Entropiefunktion <i>H</i><sub>bin</sub></i>(<i>p</i>).
+
+ $H_{\rm R}(p)$ ist identisch mit der binären Entropiefunktion $H_{\rm bin}(p)$.
  
  
{Welche Eigenschaften weist die binäre Entropiefunktion auf?
+
{Welche Eigenschaften weist die binäre Entropiefunktion $H_{\rm bin}(p)$auf?
 
|type="[]"}
 
|type="[]"}
+ <i>H</i><sub>bin</sub></i>(<i>p</i>) ist konkav hinsichtlich des Parameters <i>p</i>.
+
+ $H_{\rm bin}(p)$ ist konkav hinsichtlich des Parameters $p$.
- Es gilt Max[<i>H</i><sub>bin</sub></i>(<i>p</i>)] = 2 bit.
+
- Es gilt $\text {Max} [H_{\rm bin}(p)] = 2 \ \rm bit$.
  
  
{Welche Aussagen gelten für die blaue Entropiefunktion <i>H</i><sub>B</sub>(<i>p</i>)?
+
{Welche Aussagen gelten für die blaue Entropiefunktion $H_{\rm B}(p)$?
 
|type="[]"}
 
|type="[]"}
+ <i>H</i><sub>B</sub>(<i>p</i>) ergibt sich z.B. mit <i>p</i><sub>3</sub> = 1/2, <i>p</i><sub>1</sub> = <i>p</i>, <i>p</i><sub>2</sub> = 1/2 &ndash; <i>p</i>.
+
+ <i>H</i><sub>B</sub>(<i>p</i>) ergibt sich beispielsweise mit $p_1 = p$, $p_2 = 1/2- p$  und $p_3 = 1/2$.
+ Es gilt <i>H</i><sub>B</sub>(<i>p</i> = 0) = 1 bit.
+
+ Es gilt $H_{\rm B}(p = 0)= 1 \ \rm bit.$
- Es gilt Max[<i>H</i><sub>B</sub>(<i>p</i>)] = log<sub>2</sub> (3) bit.
+
- Es gilt Es gilt $\text {Max} [H_{\rm B}(p)] = \log_2 \hspace{0.1cm} (3) \ \rm bit$.
  
  
{Welche Aussagen gelten für die grüne Entropiefunktion <i>H</i><sub>G</sub>(<i>p</i>)?
+
{Welche Aussagen gelten für die grüne Entropiefunktion $H_{\rm G}(p)$?
 
|type="[]"}
 
|type="[]"}
+ <i>H</i><sub>G</sub>(<i>p</i>) ergibt sich z.B. mit <i>p</i><sub>3</sub> = 1/3, <i>p</i><sub>1</sub> = <i>p</i>, <i>p</i><sub>2</sub> = 2/3 &ndash; <i>p</i>.
+
+ $H_{\rm G}(p)$ ergibt sich beispielsweise mit $p_1 = p$, $p_2 = 2/3- p$  und $p_3 = 1/3$.
- Es gilt <i>H</i><sub>G</sub>(<i>p</i> = 0) = 1 bit.
+
- Es gilt $H_{\rm G}(p = 0)= 1 \ \rm bit.$
+ Es gilt Max[<i>H</i><sub>G</sub>(<i>p</i>)] = log<sub>2</sub> (3) bit.
+
+ Es gilt $\text {Max} [H_{\rm G}(p)] = \log_2 \hspace{0.1cm} (3) \ \rm bit$.
  
  

Version vom 30. Mai 2017, 14:18 Uhr

Vorgegebene Entropiefunktionen

Rechts sehen Sie die Entropiefunktionen $H_{\rm R}(p)$, $H_{\rm B}(p)$ und $H_{\rm G}(p)$, wobei „R” für „Rot” steht, „B” für „Blau” und „G” für „Grün” . Die Wahrscheinlichkeitsfunktionen lauten für alle Zufallsgrößen:

$$P_X(X) = [\hspace{0.05cm}p_1\hspace{0.05cm}, p_2\hspace{0.05cm}, p_3\hspace{0.05cm}]\hspace{0.3cm}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} |X| = 3\hspace{0.05cm}.$$

Es gilt der Zusammenhang $p_1 = p$ und $p_2 = 1 - p_3- p$.

Die Wahrscheinlichkeitsfunktion einer Zufallsgröße

$$X = \{\hspace{0.05cm}x_1\hspace{0.05cm}, \hspace{0.05cm} x_2\hspace{0.05cm},\hspace{0.05cm} ...\hspace{0.1cm} ,\hspace{0.05cm} x_{\mu}\hspace{0.05cm}, \hspace{0.05cm}...\hspace{0.1cm} , \hspace{0.05cm} x_{M}\hspace{0.05cm}\}$$

mit dem Symbolumfang $|X| = M$ lautet allgemein:

$$P_X(X) = [\hspace{0.05cm}p_1\hspace{0.05cm}, \hspace{0.05cm} p_2\hspace{0.05cm},\hspace{0.05cm} ...\hspace{0.1cm} ,\hspace{0.05cm} p_{\mu}\hspace{0.05cm}, \hspace{0.05cm}...\hspace{0.1cm} , \hspace{0.05cm} p_{M}\hspace{0.05cm}]\hspace{0.05cm}.$$

Die Entropie (Unsicherheit) dieser Zufallsgröße berechnet sich entsprechend der Gleichung

$$H(X) = {\rm E} \left [\log_2 \hspace{0.05cm} {1}/{P_X(X)} \right ]\hspace{0.05cm},$$

und liegt stets im Bereich $0 \le H(X) \le \log_2 \hspace{0.05cm} |X|$.

Die untere Schranke $H(X) = 0$ ergibt sich, wenn eine beliebige Wahrscheinlichkeit $p_\mu = 1$ ist und alle anderen $0$ sind. Die obere Schranke soll hier wie in der Vorlesung „Information Theory” von Gerhard Kramer an der TU München hergeleitet werden:

Obere Abschätzung für den natürlichen Logarithmus
  • Durch Erweiterung obiger Gleichung um $X|$ in Zähler und Nenner erhält man unter Verwendung von $\log_2 \hspace{0.05cm}x= \ln(x)/ln(2)$:
$$H(X) = \frac{1}{{\rm ln}(2)}\cdot {\rm E} \left [{\rm ln} \hspace{0.1cm} \frac{1}{|X| \cdot P_X(X)} \right ] + {\rm log}_2 \hspace{0.1cm}|X| \hspace{0.05cm}.$$
  • Wie aus nebenstehender Grafik hervorgeht, gilt die Abschätzung $\ln(x) \le x-1$ mit der Identität für $x=1$. Somit kann geschrieben werden:
$$H(X) \le \frac{1}{{\rm ln}(2)}\cdot {\rm E} \left [\frac{1}{|X| \cdot P_X(X)} -1 \right ] + {\rm log}_2 \hspace{0.1cm}|X| \hspace{0.05cm}.$$
  • In Aufgabe 3.2 wurde für den Fall$p_\mu \ne 0$ für alle $\mu$ der Erwartungswert ${\rm E} [\log_2 \hspace{0.05cm} {1}/{P_X(X)}] =|X|$ berechnet. Damit verschwindet der erste Term und man erhält das bekannte Ergebnis:
$$H(X) \le {\rm log}_2 \hspace{0.1cm}|X| \hspace{0.05cm}.$$

Hinweise:

$$H_{\rm bin}(p) = p \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{p} + (1-p) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1-p} \hspace{0.05cm}.$$


Fragebogen

1

Welche Aussagen gelten für die rote Entropiefunktion $H_{\rm R}(p)$?

$H_{\rm R}(p)$ ergibt sich z.B. mit $p_1 = p$, $p_2 = 1- p$ und $p_3 = 0$.
$H_{\rm R}(p)$ ist identisch mit der binären Entropiefunktion $H_{\rm bin}(p)$.

2

Welche Eigenschaften weist die binäre Entropiefunktion $H_{\rm bin}(p)$auf?

$H_{\rm bin}(p)$ ist konkav hinsichtlich des Parameters $p$.
Es gilt $\text {Max} [H_{\rm bin}(p)] = 2 \ \rm bit$.

3

Welche Aussagen gelten für die blaue Entropiefunktion $H_{\rm B}(p)$?

HB(p) ergibt sich beispielsweise mit $p_1 = p$, $p_2 = 1/2- p$ und $p_3 = 1/2$.
Es gilt $H_{\rm B}(p = 0)= 1 \ \rm bit.$
Es gilt Es gilt $\text {Max} [H_{\rm B}(p)] = \log_2 \hspace{0.1cm} (3) \ \rm bit$.

4

Welche Aussagen gelten für die grüne Entropiefunktion $H_{\rm G}(p)$?

$H_{\rm G}(p)$ ergibt sich beispielsweise mit $p_1 = p$, $p_2 = 2/3- p$ und $p_3 = 1/3$.
Es gilt $H_{\rm G}(p = 0)= 1 \ \rm bit.$
Es gilt $\text {Max} [H_{\rm G}(p)] = \log_2 \hspace{0.1cm} (3) \ \rm bit$.


Musterlösung

1.  Beide Aussagen sind richtig. Setzt man p3 = 0 und formal p1 = p  ⇒  p2 = 1 – p, so ergibt sich die binäre Entropiefunktion

$$H_{\rm bin}(p) = p \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{p} + (1-p) \cdot {\rm log}_2 \hspace{0.1cm} \frac{1}{1-p} \hspace{0.05cm}.$$

2.  Man kann die binäre Entropiefunktion wegen log2(x) = ln(x)/ln(2) auch in die folgende Form bringen:

$$H_{\rm bin}(p) = \frac{-1}{{\rm ln}(2)} \cdot \left [ p \cdot {\rm ln}(p) + (1-p) \cdot {\rm ln}(1-p) \right ] \hspace{0.05cm}.$$

Die erste Ableitung führt zum Ergebnis

$$\frac {\rm dH_{\rm bin}(p)}{\rm dp} \hspace{0.15cm} = \hspace{0.15cm} \frac{-1}{{\rm ln}(2)} \cdot \left [ {\rm ln}(p) + p \cdot \frac{1}{p} - {\rm ln}(1-p) - (1-p) \cdot \frac{1}{1-p} \right ] =\\ = \hspace{0.15cm} \frac{1}{{\rm ln}(2)} \cdot \left [ {\rm ln}(1-p) - {\rm ln}(p) \right ] = {\rm log}_2 \hspace{0.1cm} \frac{1-p}{p} \hspace{0.05cm}.$$

Durch Nullsetzen dieser Ableitung erhält man den Abszissenwert p = 0.5, der zum Maximum der Entropiefunktion führt: Hbin(p = 0.5) = 1 bit  ⇒  Lösungsvorschlag 2 ist falsch..

Durch nochmaliges Differenzieren erhält man für die zweite Ableitung:

$$\frac {\rm d^2H_{\rm bin}(p)}{\rm dp^2} = \frac{1}{{\rm ln}(2)} \cdot \left [ \frac{-1}{1-p} - \frac{1}{p} \right ] = \frac{-1}{{\rm ln}(2) \cdot p \cdot (1-p)} \hspace{0.05cm}.$$

Diese Funktion ist im gesamten Definitionsgebiet 0 ≤ p ≤ 1 negativ  ⇒  Hbin(p) ist konkav  ⇒  Richtig ist dementsprechend (allein) der Lösungsvorschlag 1.

3.  Richtig sind hier die Aussagen 1 und 2:

  • Für p = 0 erhält man die Wahrscheinlichkeitsfunktion PX(X) = [0, 1/2, 1/2]  ⇒  H(X) = 1 bit.
  • Das Maximum unter der Voraussetzung p3 = 1/2 ergibt sich für p1 = p2 = 1/4:
$$P_X(X) = [\hspace{0.05cm}1/4\hspace{0.05cm}, \hspace{0.05cm} 1/4\hspace{0.05cm},\hspace{0.05cm} 1/2 \hspace{0.05cm}] \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm Max} [H_{\rm B}(p)] = 1.5\,{\rm bit} \hspace{0.05cm}.$$
P ID2756 Inf A 3 3 ML.png

In kompakter Form lässt sich HB(p) mit der Einschränkung 0 ≤ p ≤ 1/2 wie folgt darstellen:

$$H_{\rm B}(p) = 1.0\,{\rm bit} + {1}/{2} \cdot H_{\rm bin}(2p) \hspace{0.05cm}.$$

4.  Richtig sind die erste und letzte Aussage. Der grüne Kurvenzug beinhaltet mit p = 1/3 auch die Gleichverteilung aller Wahrscheinlichkeiten ⇒ Max[HG(p)] = log2 (3) bit. Allgemein lässt sich der gesamte Kurvenverlauf im Bereich 0 ≤ p ≤ 2/3 wie folgt ausdrücken:

$$H_{\rm G}(p) = H_{\rm G}(p= 0) + {2}/{3} \cdot H_{\rm bin}(3p/2) \hspace{0.05cm}.$$

Aus der Grafik auf der Angabenseite erkennt man auch, dass folgende Bedingung erfüllt sein muss:

$$H_{\rm G}(p = 0) + {2}/{3}= {\rm log}_2 \hspace{0.01cm} (3) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} H_{\rm G}(p= 0) = 1.585 - 0.667 = 0.918 \,{\rm bit} \hspace{0.05cm}.$$

Der Lösungsvorschlag 2 ist hier somit falsch. Zum gleichen Ergebnis gelangt man über die Gleichung

$$H_{\rm G}(p = 0) = {1}/{3} \cdot {\rm log}_2 \hspace{0.01cm} (3) +{2}/{3} \cdot {\rm log}_2 \hspace{0.01cm} (3/2) = {\rm log}_2 \hspace{0.01cm} (3) -2/3 \cdot {\rm log}_2 \hspace{0.01cm} (2) \hspace{0.05cm}.$$

Die Grafik zeigt nochmals die Ausgangsgrafik, aber nun mit Bemaßungen.