Aufgaben:Aufgabe 3.2Z: (3, 1, 3)–Faltungscodierer: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
(Die Seite wurde neu angelegt: „{{quiz-Header|Buchseite=Kanalcodierung/Algebraische und polynomische Beschreibung }} [[Datei:|right|]] ===Fragebogen=== <quiz display=simple> {Multipl…“)
 
Zeile 1: Zeile 1:
{{quiz-Header|Buchseite=Kanalcodierung/Algebraische und polynomische Beschreibung
+
{{quiz-Header|Buchseite=Kanalcodierung/Algebraische und polynomische Beschreibung}}
  
 +
[[Datei:P_ID2625__KC_Z_3_2_neu.p|right|frame|Faltungscoder mit $k = 1, \ n = 3$ und $m = 3$]]
  
 +
Der dargestellte Faltungscodierer wird durch die Parameter $k = 1$ (nur eine Informationssequenz $\underline{u}$) sowie $n = 3$ (drei Codesequenzen $\underline{x}^{(1)}, \ \underline{x}^{(2)}, \ \underline{x]^{(3)}$) charakterisiert. Aus der Anzahl der Speicherzellen ergibt sich das Gedächtnis $m = 3$.
  
 +
Mit dem Informationsbit $u_i$ zum Codierschritt $i$ erhält man die folgenden Codebits:
 +
:$$x_i^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i} + u_{i-1} + u_{i-3}\hspace{0.05cm},$$
 +
:$$x_i^{(2)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i} + u_{i-1} + u_{i-2} + u_{i-3} \hspace{0.05cm},$$
 +
:$$x_i^{(3)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}  + u_{i-2} \hspace{0.05cm}.$$
  
 +
Daraus lassen sich Teilmatrizen $\mathbf{G}_l$ ableiten, wie auf der [[Kanalcodierung/Algebraische_und_polynomische_Beschreibung#Aufteilung_der_Generatormatrix_in_Teilmatrizen| Theorieseite 1]] dieses Kapitels beschrieben. Für die Generatormatrix kann somit geschrieben werden:
 +
:$$ { \boldsymbol{\rm G}}=\begin{pmatrix}
 +
{ \boldsymbol{\rm G}}_0 & { \boldsymbol{\rm G}}_1 & { \boldsymbol{\rm G}}_2 & \cdots  & { \boldsymbol{\rm G}}_m & & & \\
 +
& { \boldsymbol{\rm G}}_0 & { \boldsymbol{\rm G}}_1 & { \boldsymbol{\rm G}}_2 & \cdots & { \boldsymbol{\rm G}}_m & &\\
 +
&          & { \boldsymbol{\rm G}}_0 & { \boldsymbol{\rm G}}_1 & { \boldsymbol{\rm G}}_2 & \cdots & { \boldsymbol{\rm G}}_m &\\
 +
&          &          & \ddots  & \ddots & & & \ddots
 +
\end{pmatrix}\hspace{0.05cm},$$
  
}}
+
und für die Codesequenz $\underline{x} = (x_1^{(1)}, \ x_1^{(2)}, \ x_1^{(3)}, \ x_2^{(1)}, \ x_2^{(2)}, \ x_2^{(3)}, \ ...)$ gilt:
 +
:$$\underline{x} = \underline{u} \cdot { \boldsymbol{\rm G}}  \hspace{0.05cm}.$$
 +
 
 +
''Hinweis:''
 +
* Die Aufgabe gehört zum Kapitel [[
  
[[Datei:|right|]]
 
  
  
 
===Fragebogen===
 
===Fragebogen===
 
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{Multiple-Choice
 
|type="[]"}
 
|type="[]"}
- Falsch
+
+ correct
+ Richtig
+
- false
 
 
  
 
{Input-Box Frage
 
{Input-Box Frage
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$xyz \ = \ ${ 5.4 3% } $ab$
 
 
 
 
 
 
 
</quiz>
 
</quiz>
  
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''
+
'''(1)'''&nbsp;
'''2.'''
+
'''(2)'''&nbsp;
'''3.'''
+
'''(3)'''&nbsp;
'''4.'''
+
'''(4)'''&nbsp;
'''5.'''
+
'''(5)'''&nbsp;
'''6.'''
 
'''7.'''
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
  
[[Category:Aufgaben zu  Kanalcodierung|^3.2 Algebraische und polynomische Beschreibung
+
[[Category:Aufgaben zu  Kanalcodierung|^3.2 Algebraische und polynomische Beschreibung^]]
 
 
 
 
 
 
 
 
 
 
 
 
^]]
 

Version vom 29. November 2017, 15:51 Uhr

Datei:P ID2625 KC Z 3 2 neu.p
Faltungscoder mit $k = 1, \ n = 3$ und $m = 3$

Der dargestellte Faltungscodierer wird durch die Parameter $k = 1$ (nur eine Informationssequenz $\underline{u}$) sowie $n = 3$ (drei Codesequenzen $\underline{x}^{(1)}, \ \underline{x}^{(2)}, \ \underline{x]^{(3)}$) charakterisiert. Aus der Anzahl der Speicherzellen ergibt sich das Gedächtnis $m = 3$.

Mit dem Informationsbit $u_i$ zum Codierschritt $i$ erhält man die folgenden Codebits:

$$x_i^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i} + u_{i-1} + u_{i-3}\hspace{0.05cm},$$
$$x_i^{(2)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i} + u_{i-1} + u_{i-2} + u_{i-3} \hspace{0.05cm},$$
$$x_i^{(3)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i} + u_{i-2} \hspace{0.05cm}.$$

Daraus lassen sich Teilmatrizen $\mathbf{G}_l$ ableiten, wie auf der Theorieseite 1 dieses Kapitels beschrieben. Für die Generatormatrix kann somit geschrieben werden:

$$ { \boldsymbol{\rm G}}=\begin{pmatrix} { \boldsymbol{\rm G}}_0 & { \boldsymbol{\rm G}}_1 & { \boldsymbol{\rm G}}_2 & \cdots & { \boldsymbol{\rm G}}_m & & & \\ & { \boldsymbol{\rm G}}_0 & { \boldsymbol{\rm G}}_1 & { \boldsymbol{\rm G}}_2 & \cdots & { \boldsymbol{\rm G}}_m & &\\ & & { \boldsymbol{\rm G}}_0 & { \boldsymbol{\rm G}}_1 & { \boldsymbol{\rm G}}_2 & \cdots & { \boldsymbol{\rm G}}_m &\\ & & & \ddots & \ddots & & & \ddots \end{pmatrix}\hspace{0.05cm},$$

und für die Codesequenz $\underline{x} = (x_1^{(1)}, \ x_1^{(2)}, \ x_1^{(3)}, \ x_2^{(1)}, \ x_2^{(2)}, \ x_2^{(3)}, \ ...)$ gilt:

$$\underline{x} = \underline{u} \cdot { \boldsymbol{\rm G}} \hspace{0.05cm}.$$

Hinweis:

  • Die Aufgabe gehört zum Kapitel [[


Fragebogen

1

Multiple-Choice

correct
false

2

Input-Box Frage

$xyz \ = \ $

$ab$


Musterlösung

(1)  (2)  (3)  (4)  (5)