Aufgabe 3.2: VTF zur Aufgabe 3.1

Aus LNTwww
Wechseln zu:Navigation, Suche

Cosinus-Quadrat- und Dirac-VTF

Es gelten die gleichen Voraussetzungen wie bei Aufgabe 3.1.

  • Die WDF der wertkontinuierlichen Zufallsgröße ist in den Bereichen $|x| > 2$ identisch Null, und im Bereich $-2 \le x \le +2$ gilt:
$$f_x(x)={1}/{2}\cdot \cos^2({\pi}/{4}\cdot x).$$
  • Auch die diskrete Zufallsgröße $y$ ist auf den Bereich $\pm 2$ begrenzt. Es gelten folgende Wahrscheinlichkeiten:
$${\rm \Pr}(y=0)=0.4,$$
$${\rm \Pr}(y=+1)={\rm \Pr}(y=-1)=0.2,$$
$${\rm \Pr}(y=+2)={\rm \Pr}(y=-2)=0.1.$$


Hinweise:

$$\int \cos^{\rm 2}( ax)\, {\rm d}x=\frac{x}{2}+\frac{1}{4 a}\cdot \sin(2 ax).$$


Fragebogen

1

Welche der nachfolgenden Aussagen sind für die Verteilungsfunktion $F_x(r)$ der wertkontinuierlichen Zufallsgröße $x$ richtig?

Die VTF ist für alle Werte $r \le -2$ gleich $F_x(r) \equiv 0$.
Die VTF ist für alle Werte $r \ge +2$ gleich $F_x(r) \equiv 1$.
Der Verlauf von $F_x(r)$ ist monoton steigend.

2

Welche der nachfolgenden Aussagen sind für die Verteilungsfunktion $F_y(r)$ der wertdiskreten Zufallsgröße $y$ richtig?

Die VTF ist für alle Werte $r \le -2$ gleich $F_y(r) \equiv 0$.
Die VTF ist für alle Werte $r \ge +2$ gleich $F_y(r) \equiv 1$.
Der Verlauf von $F_y(r)$ ist monoton steigend.

3

Berechnen Sie die Verteilungsfunktion $F_x(r)$. Beschränken Sie sich hier auf den Bereich $0 \le r \le +2$. Welcher Wert ergibt sich für $r = +1$?

$F_x(r=+1) \ = $

4

Welcher Zusammenhang besteht zwischen $F_x(r)$ und $F_x(-r)$? Geben Sie den VTF-Wert für $-1$ ein.

$F_x(r=-1) \ = $

5

Berechnen Sie die Wahrscheinlichkeit, dass $x$ betragsmäßig kleiner als $1$ ist. Vergleichen Sie das Resultat mit dem Ergebnis der Teilaufgabe (7) von Aufgabe 3.1.

${\rm Pr}(|x| < 1) \ = $

6

Welchen Wert erhält man für die Verteilungsfunktion der diskreten Zufallsgröße $y$ an der Stelle $r = 0$?

$F_y(r = 0)\ = $


Musterlösung

(1)  Da $x$ eine kontinuierliche Zufallsgröße und auf den Bereich $|x|$ < 2 begrenzt ist, sind alle drei vorgegebenen Aussagen richtig.

(2)  Richtig sind hier nur die Aussagen 2 und 3:

  • Bei einer diskreten Zufallsgröße steigt die Verteilungsfunktion nur schwach monoton an, d. h. es gibt außer Sprüngen ausschließlich horizontale Abschnitte der VTF.
  • Da an den Sprungstellen jeweils der rechtsseitige Grenzwert gilt, ist demzufolge $F_y(-2) = 0.1$, also ungleich $0$.


(3)  Die VTF $F_x(r)$ berechnet sich als das Integral von $-\infty$ bis $r$ über die WDF $f_x(x)$. Aufgrund der Symmetrie kann hierfür im Bereich $0 \le r \le +2$ geschrieben werden: $$F_{x} (r) =\frac{1}{2} + \int_{0}^{r} f_x(x)\;{\rm d}x = \frac{1}{2} + \int_{0}^{ r} {1}/{2}\cdot \cos^2 ({\pi}/{4}\cdot x)\;{\rm d}x.$$

In gleicher Weise wie bei der Teilaufgabe (7) der Aufgabe 3.1 erhält man somit: $$F_{x} (r) =\rm \frac{1}{2} + \frac{\it r}{\rm 4} + \rm \frac{1}{2 \pi} \cdot\rm sin({\pi}/{2}\cdot \it r),$$ $$F_{x} (r=0) =\rm \frac{1}{2} + \rm \frac{1}{2 \pi} \cdot\rm sin(\rm 0)\hspace{0.15cm}{= 0.500},$$ $$F_{x} (r=1) =\rm \frac{1}{2} + \frac{\rm 1}{\rm 4} + \rm \frac{1}{2 \pi}\cdot \rm sin({\pi}/{2})\hspace{0.15cm}\underline{=0.909},$$ $$F_{x} (r=2) =\rm \frac{1}{2} + \frac{\rm1}{\rm 2} + \rm \frac{1}{2 \pi} \cdot \rm sin(\pi)\hspace{0.15cm}{= 1.000}.$$

(41)  Aufgrund der Punktsymmetrie um $r=0$ bzw. $F_{x} (0) = 1/2$ und wegen $\sin(-x) = -sin(x)$ gilt diese Formel im gesamten Bereich, wie die folgende Kontrollrechnung zeigt: $$F_{x} (r=-2) =\rm \frac{1}{2} - \frac{\rm1}{\rm 2} - \rm \frac{1}{2 \pi} \cdot\rm sin(\pi)=0,$$ $$F_{x} (r=-1) =\rm \frac{1}{2} - \frac{\rm1}{\rm 4} - \rm \frac{1}{2 \pi} \cdot\rm sin({\pi}/{2})\hspace{0.15cm}\underline{= 0.091}.$$

(5)  Für die Wahrscheinlichkeit, dass $x$ zwischen $-1$ und $+1$ liegt, gilt: $${\rm Pr}(|x|< 1)= F_{x}(1) - F_{ x}(-1)= 0.909-0.091\hspace{0.15cm}\underline{= 0.818}.$$

Dieses Ergebnis stimmt exakt mit dem Resultat der Teilaufgabe (7) der Aufgabe 3.1 überein, das durch direkte Integration über die WDF ermittelt wurde.

(6)  Die VTF der diskreten Zufallsgröße $y$ an der Stelle $y =0$ ist die Summe der Wahrscheinlichkeiten von $-2$, $-1$ und $0$, also gilt $F_y(r = 0)\hspace{0.15cm}\underline{= 0.7}$.