Aufgaben:Aufgabe 3.2: Spektrum bei Winkelmodulation: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
Zeile 74: Zeile 74:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Die Phase $ϕ(t)$ ist proportional zum Quellensignal $q(t)$ &nbsp; ⇒ &nbsp; es handelt sich um eine Phasenmodulation  &nbsp; ⇒ &nbsp; <u>Antwort 2</u>.
+
'''(1)'''&nbsp; Die Phase&nbsp; $ϕ(t)$&nbsp; ist proportional zum Quellensignal&nbsp; $q(t)$ &nbsp; ⇒ &nbsp; es handelt sich um eine Phasenmodulation  &nbsp; ⇒ &nbsp; <u>Antwort 2</u>.
  
  
  
'''(2)'''&nbsp; Eine Winkelmodulation (PM, FM) führt bei bandbegrenztem Kanal stets zu nichtlinearen Verzerrungen.  
+
'''(2)'''&nbsp; Eine Winkelmodulation&nbsp; (PM, FM)&nbsp; führt bei bandbegrenztem Kanal stets zu nichtlinearen Verzerrungen.  
*Bei Zweiseitenband-Amplitudenmodulation (ZSB-AM) ist hier dagegen bereits mit $B_{\rm K} = 6 \ \rm kHz$ eine verzerrungsfreie Übertragung möglich  &nbsp; ⇒ &nbsp; <u>Antwort 1</u>.
+
*Bei Zweiseitenband-Amplitudenmodulation&nbsp; (ZSB-AM)&nbsp; ist hier dagegen bereits mit&nbsp; $B_{\rm K} = 6 \ \rm kHz$&nbsp; eine verzerrungsfreie Übertragung möglich  &nbsp; ⇒ &nbsp; <u>Antwort 1</u>.
  
  
  
'''(3)'''&nbsp; Der Modulationsindex (oder Phasenhub) ist bei Phasenmodulation gleich $η = K_{\rm M} · A_{\rm N}$.  
+
'''(3)'''&nbsp; Der Modulationsindex (oder Phasenhub) ist bei Phasenmodulation gleich&nbsp; $η = K_{\rm M} · A_{\rm N}$.  
*Somit ist die Modulatorkonstante $K_{\rm M} = 1/A_{\rm N}\hspace{0.15cm}\underline { = 0.5 \rm \cdot {1}/{V}}$ zu wählen, damit sich $η = 1$ ergibt.
+
*Somit ist die Modulatorkonstante&nbsp; $K_{\rm M} = 1/A_{\rm N}\hspace{0.15cm}\underline { = 0.5 \rm \cdot {1}/{V}}$&nbsp; zu wählen, damit sich&nbsp; $η = 1$&nbsp; ergibt.
  
  
Zeile 90: Zeile 90:
 
'''(4)'''&nbsp; Es liegt ein sogenanntes Besselspektrum vor:
 
'''(4)'''&nbsp; Es liegt ein sogenanntes Besselspektrum vor:
 
:$$ S_{\rm TP}(f) = A_{\rm T} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta (f - n \cdot f_{\rm N})\hspace{0.05cm}.$$
 
:$$ S_{\rm TP}(f) = A_{\rm T} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta (f - n \cdot f_{\rm N})\hspace{0.05cm}.$$
*Dieses ist ein diskretes Spektrum mit Anteilen bei $f = n · f_{\rm N}$, wobei $n$ ganzzahlig ist.  
+
*Dieses ist ein diskretes Spektrum mit Anteilen bei&nbsp; $f = n · f_{\rm N}$, wobei&nbsp; $n$&nbsp; ganzzahlig ist.  
*Die Gewichte der Diracfunktionen sind durch die Besselfunktionen gegeben. Mit $A_{\rm T} = 1\ \rm  V$ erhält man:
+
*Die Gewichte der Diracfunktionen sind durch die Besselfunktionen gegeben.&nbsp; Mit&nbsp; $A_{\rm T} = 1\ \rm  V$&nbsp; erhält man:
 
[[Datei:P_ID1082__Mod_A_3_2_d.png|right|frame|PM–Spektrum im äquivalenten Tiefpass–Bereich]]
 
[[Datei:P_ID1082__Mod_A_3_2_d.png|right|frame|PM–Spektrum im äquivalenten Tiefpass–Bereich]]
 
:$$ S_{\rm TP}(f = 0)  =  A_{\rm T} \cdot {\rm J}_0 (\eta = 1) \hspace{0.15cm}\underline {= 0.765\,{\rm V}},$$
 
:$$ S_{\rm TP}(f = 0)  =  A_{\rm T} \cdot {\rm J}_0 (\eta = 1) \hspace{0.15cm}\underline {= 0.765\,{\rm V}},$$
 
:$$ S_{\rm TP}(f = f_{\rm N})  =  A_{\rm T} \cdot {\rm J}_1 (\eta = 1)\hspace{0.15cm} = 0.440\,{\rm V},$$
 
:$$ S_{\rm TP}(f = f_{\rm N})  =  A_{\rm T} \cdot {\rm J}_1 (\eta = 1)\hspace{0.15cm} = 0.440\,{\rm V},$$
 
:$$ S_{\rm TP}(f = 2 \cdot f_{\rm N})  =  A_{\rm T} \cdot {\rm J}_2 (\eta = 1) = 0.115\,{\rm V} \hspace{0.05cm}.$$
 
:$$ S_{\rm TP}(f = 2 \cdot f_{\rm N})  =  A_{\rm T} \cdot {\rm J}_2 (\eta = 1) = 0.115\,{\rm V} \hspace{0.05cm}.$$
*Aufgrund der Symmetrie ${\rm J}_{-n} (\eta) = (-1)^n \cdot {\rm J}_{n} (\eta)$ erhält man für die Spektrallinie bei $f = -3 \ \rm kHz$:
+
*Aufgrund der Symmetrie&nbsp; ${\rm J}_{-n} (\eta) = (-1)^n \cdot {\rm J}_{n} (\eta)$&nbsp; erhält man für die Spektrallinie bei&nbsp; $f = -3 \ \rm kHz$:
 
:$$S_{\rm TP}(f = -f_{\rm N}) = -S_{\rm TP}(f = +f_{\rm N}) =\hspace{-0.01cm}\underline { -0.440\,{\rm V} \hspace{0.05cm}}.$$
 
:$$S_{\rm TP}(f = -f_{\rm N}) = -S_{\rm TP}(f = +f_{\rm N}) =\hspace{-0.01cm}\underline { -0.440\,{\rm V} \hspace{0.05cm}}.$$
''Anmerkung'': Eigentlich müsste man für den Spektralwert bei $f = 0$ schreiben:
+
''Anmerkung'':&nbsp; Eigentlich müsste man für den Spektralwert bei&nbsp; $f = 0$&nbsp; schreiben:
 
:$$S_{\rm TP}(f = 0) = 0.765\,{\rm V} \cdot \delta (f) \hspace{0.05cm}.$$
 
:$$S_{\rm TP}(f = 0) = 0.765\,{\rm V} \cdot \delta (f) \hspace{0.05cm}.$$
Dieser ist somit aufgrund der Diracfunktion unendlich groß, lediglich das Gewicht der Diracfunktion ist endlich. Gleiches gilt für alle diskreten Spektrallinien.
+
*Dieser ist somit aufgrund der Diracfunktion unendlich groß, lediglich das Gewicht der Diracfunktion ist endlich.  
 +
*Gleiches gilt für alle diskreten Spektrallinien.
  
  
  
'''(5)'''&nbsp; $S_+(f)$ ergibt sich aus $S_{\rm TP}(f)$ durch Verschiebung um $f_{\rm T}$  nach rechts. Deshalb ist
+
'''(5)'''&nbsp; $S_+(f)$&nbsp; ergibt sich aus&nbsp; $S_{\rm TP}(f)$&nbsp; durch Verschiebung um&nbsp; $f_{\rm T}$&nbsp; nach rechts.&nbsp; Deshalb ist
 
:$$S_{\rm +}(f = 97\,{\rm kHz}) = S_{\rm TP}(f = -3\,{\rm kHz}) \hspace{0.15cm}\underline {=-0.440\,{\rm V}} \hspace{0.05cm}.$$
 
:$$S_{\rm +}(f = 97\,{\rm kHz}) = S_{\rm TP}(f = -3\,{\rm kHz}) \hspace{0.15cm}\underline {=-0.440\,{\rm V}} \hspace{0.05cm}.$$
*Das tatsächliche Spektrum unterscheidet sich von $S_+(f)$ bei positiven Frequenzen um den Faktor $1/2$:
+
*Das tatsächliche Spektrum unterscheidet sich von&nbsp; $S_+(f)$&nbsp; bei positiven Frequenzen um den Faktor&nbsp; $1/2$:
 
:$$S(f = 97\,{\rm kHz}) = {1}/{2} \cdot S_{\rm +}(f = 97\,{\rm kHz}) \hspace{0.15cm}\underline {=-0.220\,{\rm V}} \hspace{0.05cm}.$$
 
:$$S(f = 97\,{\rm kHz}) = {1}/{2} \cdot S_{\rm +}(f = 97\,{\rm kHz}) \hspace{0.15cm}\underline {=-0.220\,{\rm V}} \hspace{0.05cm}.$$
 
*Allgemein kann geschrieben werden:
 
*Allgemein kann geschrieben werden:
Zeile 112: Zeile 113:
  
  
'''(6)'''&nbsp; Unter der vorgeschlagenen Vernachlässigung können alle Bessellinien ${\rm J}_{|n|>3}$ außer Acht gelassen werden.
+
 
* Damit erhält man $B_{\rm K} = 2 · 3 · f_{\rm N}\hspace{0.15cm}\underline { = 18 \ \rm kHz}$.
+
'''(6)'''&nbsp; Unter der vorgeschlagenen Vernachlässigung können alle Bessellinien&nbsp; ${\rm J}_{|n|>3}$&nbsp; außer Acht gelassen werden.
 +
* Damit erhält man&nbsp; $B_{\rm K} = 2 · 3 · f_{\rm N}\hspace{0.15cm}\underline { = 18 \ \rm kHz}$.
  
  

Aktuelle Version vom 24. März 2020, 18:16 Uhr

Tabelle der Besselfunktionen

Es wird hier von folgenden Gleichungen ausgegangen:

  • Quellensignal:
$$q(t) = 2\,{\rm V} \cdot \sin(2 \pi \cdot 3\,{\rm kHz} \cdot t)\hspace{0.05cm},$$
  • Sendesignal:
$$s(t) = 1\,{\rm V} \cdot \cos\hspace{-0.1cm}\big[2 \pi \cdot 100\,{\rm kHz} \cdot t + K_{\rm M} \cdot q(t)\big ]\hspace{0.05cm},$$
  • Empfangssignal (idealer Kanal:
$$r(t) = s(t) = 1\,{\rm V} \cdot \cos\hspace{-0.1cm}\big[2 \pi \cdot 100\,{\rm kHz} \cdot t + \phi(t)\big ]\hspace{0.05cm},$$
  • idealer Demodulator:
$$ v(t) = \frac{1}{ K_{\rm M}} \cdot \phi(t)\hspace{0.05cm}.$$

Die Grafik zeigt die Besselfunktionen  ${\rm J}_n (\eta)$  erster Art und  $n$–ter Ordnung in tabellarischer Form.





Hinweise:


Fragebogen

1

Welches Modulationsverfahren liegt hier vor?

Amplitudenmodulation.
Phasenmodulation.
Frequenzmodulation.

2

Welches Modulationsverfahren würden Sie wählen, wenn die Kanalbandbreite nur  $B_{\rm K} = 10 \ \rm kHz$  betragen würde?

Amplitudenmodulation.
Phasenmodulation.
Frequenzmodulation.

3

Wie ist die Modulatorkonstante  $K_{\rm M}$  zu wählen, damit der Phasenhub  $η = 1$  beträgt?

$K_{\rm M} \ = \ $

$\ \rm 1/V$

4

Berechnen Sie das Spektrum  $S_{\rm TP}(f)$  des äquivalenten Tiefpass–Signals  $s_{\rm TP}(t)$.  Wie groß sind die Gewichte der Spektrallinien bei  $f = 0$  und  $f = -3 \ \rm kHz$?

$S_{\rm TP}(f = 0)\ = \ $

$\ \rm V$
$S_{\rm TP}(f = -3\ \rm kHz) \ = \ $

$\ \rm V$

5

Berechnen Sie die Spektren des analytischen Signals  $s_{\rm +}(t)$  sowie des physikalischen Signals  $s(t)$.  Wie groß sind die Gewichte der Spektrallinien bei  $f = 97 \ \rm kHz$?

$S_+(f = 97 \ \rm kHz)\ = \ $

$\ \rm V$
$S(f = 97 \ \rm kHz)\hspace{0.32cm} = \ $

$\ \rm V$

6

Wie groß ist die erforderliche Kanalbandbreite  $B_{\rm K}$  für  $ η = 1$, wenn man (betragsmäßige) Impulsgewichte kleiner als  $0.01$  vernachlässigt?

$η = 1\text{:} \ \ \ B_{\rm K}\ = \ $

$\ \rm kHz$

7

Welche Kanalbandbreiten würden sich für  $η = 2$  und  $η = 3$  ergeben?

$η = 2\text{:} \ \ \ B_{\rm K}\ = \ $

$\ \rm kHz$
$η = 3\text{:} \ \ \ B_{\rm K}\ = \ $

$\ \rm kHz$


Musterlösung

(1)  Die Phase  $ϕ(t)$  ist proportional zum Quellensignal  $q(t)$   ⇒   es handelt sich um eine Phasenmodulation   ⇒   Antwort 2.


(2)  Eine Winkelmodulation  (PM, FM)  führt bei bandbegrenztem Kanal stets zu nichtlinearen Verzerrungen.

  • Bei Zweiseitenband-Amplitudenmodulation  (ZSB-AM)  ist hier dagegen bereits mit  $B_{\rm K} = 6 \ \rm kHz$  eine verzerrungsfreie Übertragung möglich   ⇒   Antwort 1.


(3)  Der Modulationsindex (oder Phasenhub) ist bei Phasenmodulation gleich  $η = K_{\rm M} · A_{\rm N}$.

  • Somit ist die Modulatorkonstante  $K_{\rm M} = 1/A_{\rm N}\hspace{0.15cm}\underline { = 0.5 \rm \cdot {1}/{V}}$  zu wählen, damit sich  $η = 1$  ergibt.


(4)  Es liegt ein sogenanntes Besselspektrum vor:

$$ S_{\rm TP}(f) = A_{\rm T} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta (f - n \cdot f_{\rm N})\hspace{0.05cm}.$$
  • Dieses ist ein diskretes Spektrum mit Anteilen bei  $f = n · f_{\rm N}$, wobei  $n$  ganzzahlig ist.
  • Die Gewichte der Diracfunktionen sind durch die Besselfunktionen gegeben.  Mit  $A_{\rm T} = 1\ \rm V$  erhält man:
PM–Spektrum im äquivalenten Tiefpass–Bereich
$$ S_{\rm TP}(f = 0) = A_{\rm T} \cdot {\rm J}_0 (\eta = 1) \hspace{0.15cm}\underline {= 0.765\,{\rm V}},$$
$$ S_{\rm TP}(f = f_{\rm N}) = A_{\rm T} \cdot {\rm J}_1 (\eta = 1)\hspace{0.15cm} = 0.440\,{\rm V},$$
$$ S_{\rm TP}(f = 2 \cdot f_{\rm N}) = A_{\rm T} \cdot {\rm J}_2 (\eta = 1) = 0.115\,{\rm V} \hspace{0.05cm}.$$
  • Aufgrund der Symmetrie  ${\rm J}_{-n} (\eta) = (-1)^n \cdot {\rm J}_{n} (\eta)$  erhält man für die Spektrallinie bei  $f = -3 \ \rm kHz$:
$$S_{\rm TP}(f = -f_{\rm N}) = -S_{\rm TP}(f = +f_{\rm N}) =\hspace{-0.01cm}\underline { -0.440\,{\rm V} \hspace{0.05cm}}.$$

Anmerkung:  Eigentlich müsste man für den Spektralwert bei  $f = 0$  schreiben:

$$S_{\rm TP}(f = 0) = 0.765\,{\rm V} \cdot \delta (f) \hspace{0.05cm}.$$
  • Dieser ist somit aufgrund der Diracfunktion unendlich groß, lediglich das Gewicht der Diracfunktion ist endlich.
  • Gleiches gilt für alle diskreten Spektrallinien.


(5)  $S_+(f)$  ergibt sich aus  $S_{\rm TP}(f)$  durch Verschiebung um  $f_{\rm T}$  nach rechts.  Deshalb ist

$$S_{\rm +}(f = 97\,{\rm kHz}) = S_{\rm TP}(f = -3\,{\rm kHz}) \hspace{0.15cm}\underline {=-0.440\,{\rm V}} \hspace{0.05cm}.$$
  • Das tatsächliche Spektrum unterscheidet sich von  $S_+(f)$  bei positiven Frequenzen um den Faktor  $1/2$:
$$S(f = 97\,{\rm kHz}) = {1}/{2} \cdot S_{\rm +}(f = 97\,{\rm kHz}) \hspace{0.15cm}\underline {=-0.220\,{\rm V}} \hspace{0.05cm}.$$
  • Allgemein kann geschrieben werden:
$$ S(f) = \frac{A_{\rm T}}{2} \cdot \sum_{n = - \infty}^{+\infty}{\rm J}_n (\eta) \cdot \delta (f \pm (f_{\rm T}+ n \cdot f_{\rm N}))\hspace{0.05cm}.$$


(6)  Unter der vorgeschlagenen Vernachlässigung können alle Bessellinien  ${\rm J}_{|n|>3}$  außer Acht gelassen werden.

  • Damit erhält man  $B_{\rm K} = 2 · 3 · f_{\rm N}\hspace{0.15cm}\underline { = 18 \ \rm kHz}$.


(7)  Die Zahlenwerte in der Tabelle auf der Angabenseite zeigen, dass nun folgende Kanalbandbreiten erforderlich wären:

  • für $η = 2$:     $B_{\rm K} \hspace{0.15cm}\underline { = 24 \ \rm kHz}$,
  • für $η = 3$:     $B_{\rm K} \hspace{0.15cm}\underline { = 36 \ \rm kHz}$.