Aufgaben:Aufgabe 3.2: G–Matrix eines Faltungscodierers: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(9 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
 
{{quiz-Header|Buchseite=Kanalcodierung/Algebraische und polynomische Beschreibung}}
 
{{quiz-Header|Buchseite=Kanalcodierung/Algebraische und polynomische Beschreibung}}
  
[[Datei:P_ID2614__KC_A_3_1_neu.png|right|frame|Vorgegebener Faltungscoder]]
+
[[Datei:P_ID2614__KC_A_3_1_neu.png|right|frame|Vorgegebener Faltungscodierer]]
Wir betrachten wie in [[Aufgaben:3.1_Analyse_eines_Faltungscoders| Aufgabe A3.1]] den nebenstehend gezeichneten Faltungscodierer der Rate $3/4$. Dieser wird durch den folgenden Gleichungssatz charakterisiert:
+
Wir betrachten wie in  [[Aufgaben:Aufgabe_3.1:_Analyse_eines_Faltungscodierers| Aufgabe 3.1]]  den nebenstehend gezeichneten Faltungscodierer der Rate  $3/4$. Dieser wird durch den folgenden Gleichungssatz charakterisiert:
 
:$$x_i^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)}  \hspace{0.05cm},$$
 
:$$x_i^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)}  \hspace{0.05cm},$$
 
:$$x_i^{(2)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)} + u_{i}^{(2)} + u_{i-1}^{(2)} + u_{i-1}^{(3)} \hspace{0.05cm},$$
 
:$$x_i^{(2)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)} + u_{i}^{(2)} + u_{i-1}^{(2)} + u_{i-1}^{(3)} \hspace{0.05cm},$$
Zeile 8: Zeile 8:
 
:$$x_i^{(4)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)} + u_{i}^{(2)} + u_{i}^{(3)}+ u_{i-2}^{(3)}\hspace{0.05cm}.$$
 
:$$x_i^{(4)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)} + u_{i}^{(2)} + u_{i}^{(3)}+ u_{i-2}^{(3)}\hspace{0.05cm}.$$
  
Bezieht man sich auf die bei $i = 1$ beginnenden und sich zeitlich bis ins Unendliche erstreckenden Sequenzen
+
Bezieht man sich auf die bei  $i = 1$  beginnenden und sich zeitlich bis ins Unendliche erstreckenden Sequenzen
:$$\underline{\it u} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left ( \underline{\it u}_1, \underline{\it u}_2, ... \hspace{0.1cm}, \underline{\it u}_i , ... \hspace{0.1cm} \right )\hspace{0.05cm},$$
+
:$$\underline{\it u} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left ( \underline{\it u}_1, \underline{\it u}_2, \text{...} \hspace{0.1cm}, \underline{\it u}_i ,\text{...} \hspace{0.1cm} \right )\hspace{0.05cm},$$
:$$\underline{\it x} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left ( \underline{\it x}_1, \underline{\it x}_2, ... \hspace{0.1cm}, \underline{\it x}_i , ... \hspace{0.1cm} \right )$$
+
:$$\underline{\it x} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left ( \underline{\it x}_1, \underline{\it x}_2, \text{...} \hspace{0.1cm}, \underline{\it x}_i , \text{...} \hspace{0.1cm} \right )$$
  
mit $\underline{u}_i = (u_i^{(1)}, u_i^{(2)}, \ ... \ , u_i^{(k)})$ bzw. $\underline{x}_i = (x_i^{(1)}, x_i^{(2)}, \ ... \ , x_i^{(n)})$, so kann der Zusammenhang zwischen der Informationssequenz $\underline{u}$ und der Codesequenz $\underline{x}$ durch die Generatormatrix $\mathbf{G}$ in folgender Form ausgedrückt werden:
+
mit  $\underline{u}_i = (u_i^{(1)}, u_i^{(2)}, \ \text{...} \ , u_i^{(k)})$  bzw.  $\underline{x}_i = (x_i^{(1)}, x_i^{(2)}, \ \text{...} \ , x_i^{(n)})$, so kann der Zusammenhang zwischen der Informationssequenz  $\underline{u}$  und der Codesequenz  $\underline{x}$  durch die Generatormatrix  $\mathbf{G}$  in folgender Form ausgedrückt werden:
 
:$$\underline{x} = \underline{u} \cdot { \boldsymbol{\rm G}}  \hspace{0.05cm}.$$
 
:$$\underline{x} = \underline{u} \cdot { \boldsymbol{\rm G}}  \hspace{0.05cm}.$$
  
Für die Generatormatrix eines Faltungscoders mit dem Gedächtnis $m$ ist dabei zu setzen:
+
Für die Generatormatrix eines Faltungscoders mit dem Gedächtnis  $m$  ist dabei zu setzen:
 
:$${ \boldsymbol{\rm G}}=\begin{pmatrix}
 
:$${ \boldsymbol{\rm G}}=\begin{pmatrix}
 
{ \boldsymbol{\rm G}}_0 & { \boldsymbol{\rm G}}_1 & { \boldsymbol{\rm G}}_2 & \cdots  & { \boldsymbol{\rm G}}_m & & & \\
 
{ \boldsymbol{\rm G}}_0 & { \boldsymbol{\rm G}}_1 & { \boldsymbol{\rm G}}_2 & \cdots  & { \boldsymbol{\rm G}}_m & & & \\
Zeile 23: Zeile 23:
 
\end{pmatrix}\hspace{0.05cm}.$$
 
\end{pmatrix}\hspace{0.05cm}.$$
  
Hierbei bezeichnen $\mathbf{G}_0, \mathbf{G}_1, \mathbf{G}_2, \ ...$ Teilmatrizen mit jeweils $k$ Zeilen und $n$ Spalten sowie binären Matrixelementen ($0$ oder $1$). Ist das Matrixelement $\mathbf{G}_l(\kappa, j) = 1$, so bedeutet dies, dass das Codebit $x_i^{(j)}$ durch das Informationsbit $u_{i–l}^{(\kappa)}$ beeinflusst wird. Andernfalls ist dieses Matrixelement gleich $0$.  
+
*Hierbei bezeichnen  $\mathbf{G}_0, \ \mathbf{G}_1, \ \mathbf{G}_2, \ \text{...}$  Teilmatrizen mit jeweils  $k$  Zeilen und  $n$  Spalten sowie binären Matrixelementen  $(0$  oder  $1)$.  
 +
*Ist das Matrixelement  $\mathbf{G}_l(\kappa, j) = 1$, so bedeutet dies, dass das Codebit  $x_i^{(j)}$  durch das Informationsbit  $u_{i-l}^{(\kappa)}$  beeinflusst wird.  
 +
*Andernfalls ist dieses Matrixelement gleich  $0$.  
 +
 
  
 
Ziel dieser Aufgabe ist es, die zur Informationssequenz
 
Ziel dieser Aufgabe ist es, die zur Informationssequenz
Zeile 30: Zeile 33:
 
,\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm})$$
 
,\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm})$$
  
gehörige Codesequenz $\underline{x}$ entsprechend den obigen Vorgaben zu berechnen. Das Ergebnis müsste mit dem Ergebnis von [[Aufgaben:3.1_Analyse_eines_Faltungscoders| Aufgabe A3.1]] übereinstimmen, das allerdings auf anderem Wege erzielt wurde.
+
gehörige Codesequenz  $\underline{x}$  entsprechend den obigen Vorgaben zu berechnen. Das Ergebnis müsste mit dem Ergebnis von  [[Aufgaben:Aufgabe_3.1:_Analyse_eines_Faltungscodierers| Aufgabe 3.1]]  übereinstimmen, das allerdings auf anderem Wege erzielt wurde.
 +
 
 +
 
  
''Hinweise:''
+
 
* Die  Aufgabe gehört zum Themengebiet des Kapitels [[Kanalcodierung/Algebraische_und_polynomische_Beschreibung| Algebraische und polynomische Beschreibung]].
+
 
* Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
+
 
 +
 
 +
 
 +
''Hinweis:''
 +
* Die  Aufgabe gehört zum Kapitel  [[Kanalcodierung/Algebraische_und_polynomische_Beschreibung| Algebraische und polynomische Beschreibung]].
 +
  
  
Zeile 40: Zeile 50:
 
===Fragebogen===
 
===Fragebogen===
 
<quiz display=simple>
 
<quiz display=simple>
{Aus wie vielen Teilmatrizen $\mathbf{G}_l$ setzt sich die Matrix $\mathbf{G}$ zusammen?
+
{Aus wie vielen Teilmatrizen&nbsp; $\mathbf{G}_l$&nbsp; setzt sich die Matrix&nbsp; $\mathbf{G}$&nbsp; zusammen?
 
|type="{}"}
 
|type="{}"}
 
${\rm Anzahl \ der \ Teilmatrizen} \ = \ ${ 3 3% }  
 
${\rm Anzahl \ der \ Teilmatrizen} \ = \ ${ 3 3% }  
  
{Welche Aussagen treffen für die Teilmatrix $\mathbf{G}_0$ zu?
+
{Welche Aussagen treffen für die Teilmatrix&nbsp; $\mathbf{G}_0$&nbsp; zu?
 
|type="[]"}
 
|type="[]"}
+ Insgesamt beinhaltet $\mathbf{G}_0$ acht Einsen.
+
+ Insgesamt beinhaltet&nbsp; $\mathbf{G}_0$&nbsp; acht Einsen.
+ Die erste Zeile von $\mathbf{G}_0$ lautet $1 \ 1 \ 0 \ 1$.
+
+ Die erste Zeile von&nbsp; $\mathbf{G}_0$&nbsp; lautet&nbsp; $1 \ 1 \ 0 \ 1$.
- Die erste Zeile von $\mathbf{G}_0$ lautet $1 \ 0 \ 0$.
+
- Die erste Zeile von&nbsp; $\mathbf{G}_0$&nbsp; lautet&nbsp; $1 \ 0 \ 0$.
  
{Welche aussagen treffen für die Teilmatrix $\mathbf{G}_1$ zu?
+
{Welche Aussagen treffen für die Teilmatrix&nbsp; $\mathbf{G}_1$&nbsp; zu?
 
|type="[]"}
 
|type="[]"}
+ Die erste Zeile lautet $0 \ 0 \ 0 \ 0$.
+
+ Die erste Zeile lautet&nbsp; $0 \ 0 \ 0 \ 0$.
+ Die zweite Zeile lautet $0 \ 1 \ 1 \ 0$.
+
+ Die zweite Zeile lautet&nbsp; $0 \ 1 \ 1 \ 0$.
+ Die dritte Zeile lautet $0 \ 1 \ 0 \ 0$.
+
+ Die dritte Zeile lautet&nbsp; $0 \ 1 \ 0 \ 0$.
  
{Ermitteln Sie die ersten neun Zeilen und zwölf Spalten der Generatormatrix $\mathbf{G}$. Welche Aussagen treffen zu?
+
{Ermitteln Sie die ersten neun Zeilen und zwölf Spalten der Generatormatrix&nbsp; $\mathbf{G}$. Welche Aussagen treffen zu?
 
|type="[]"}
 
|type="[]"}
 
- Es gibt mindestens eine Zeile mit lauter Nullen.
 
- Es gibt mindestens eine Zeile mit lauter Nullen.
 
- Es gibt mindestens eine Zeile mit lauter Einsen.
 
- Es gibt mindestens eine Zeile mit lauter Einsen.
+ In den Spalten $1, 5, 9$ steht jeweils nur eine einzige Eins.
+
+ In den Spalten&nbsp; $1, 5, 9$&nbsp; steht jeweils nur eine einzige Eins.
  
{Welche Codesequenz $\underline {x}$ ergibt sich für $\underline {u} = (0, 1, 1, 1, 1, 0, 1, 0, 1)$?
+
{Welche Codesequenz&nbsp; $\underline {x}$&nbsp; ergibt sich für&nbsp; $\underline {u} = (0, 1, 1, 1, 1, 0, 1, 0, 1)$?
|type="[]"}
+
|type="()"}
- Es gilt: $\underline{x} = (1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, \ ...)$.
+
- Es gilt:&nbsp; $\underline{x} = (1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, \ \text{...})$.
+ Es gilt: $\underline{x} = (0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, \ ...)$.
+
+ Es gilt:&nbsp; $\underline{x} = (0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, \ \text{...})$.
- Es gilt: $\underline{x} = (0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, \ ...)$.
+
- Es gilt:&nbsp; $\underline{x} = (0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, \ \text{...})$.
 
</quiz>
 
</quiz>
  
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Das Gedächtnis des betrachteten Faltungscodierers ist $m = 2$. Damit setzt sich die Generatormatrix $\mathbf{G}$ aus den $m + 1 \ \underline {= 3}$ Teilmatrizen $\mathbf{G}_0, \mathbf{G}_1$ und $\mathbf{G}_2$ zusammen.
+
'''(1)'''&nbsp; Das Gedächtnis des betrachteten Faltungscodierers ist $m = 2$.  
 +
*Damit setzt sich die Generatormatrix $\mathbf{G}$ aus den $m + 1 \ \underline {= 3}$ Teilmatrizen $\mathbf{G}_0, \mathbf{G}_1$ und $\mathbf{G}_2$ zusammen.
 +
 
  
  
'''(2)'''&nbsp; Aus den angegebenen Gleichungen
+
'''(2)'''&nbsp; Richtig sind die <u>Aussage 1 und 2</u>:
 +
*Aus den angegebenen Gleichungen
 
:$$x_i^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)}  \hspace{0.05cm},$$
 
:$$x_i^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)}  \hspace{0.05cm},$$
 
:$$x_i^{(2)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)} + u_{i}^{(2)} + u_{i-1}^{(2)} + u_{i-1}^{(3)} \hspace{0.05cm},$$
 
:$$x_i^{(2)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)} + u_{i}^{(2)} + u_{i-1}^{(2)} + u_{i-1}^{(3)} \hspace{0.05cm},$$
Zeile 80: Zeile 93:
 
:$$x_i^{(4)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)} + u_{i}^{(2)} + u_{i}^{(3)}+ u_{i-2}^{(3)}$$
 
:$$x_i^{(4)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)} + u_{i}^{(2)} + u_{i}^{(3)}+ u_{i-2}^{(3)}$$
  
erkennt man, dass im gesamten Gleichungssatz genau achtmal ein Eingangswert $u_i^{(j)}$ mit $j &#8712; \{1, 2, 3\}$ vorkommt &#8658; <u>Aussage 1 trifft zu</u>. Der Eingangswert $u_i^{(1)}$ beeinflusst die Ausgänge $x_i^{(1)}$, $x_i^{(2)}$ und $x_i^{(4)}$. Damit lautet die erste Zeile von $\mathbf{G}_0 \text{:} \, 1 \ 1 \ 0 \ 1$ &#8658; <u>Aussage 2 trifft zu</u>. Dagegen ist die Aussage 3 falsch: Nicht die erste Zeile von $\mathbf{G}_0$ lautet $1 \ 0 \ 0$, sondern die erste Spalte. Dies besagt, dass $x_i^{(1)}$ nur von $u_i^{(1)}$ abhängt, aber nicht von $u_i^{(2)}$ oder von $u_i^{(3)}$. Es handelt sich um einen systematischen Code.
+
erkennt man, dass im gesamten Gleichungssatz genau achtmal ein Eingangswert $u_i^{(j)}$ mit $j &#8712; \{1, 2, 3\}$ vorkommt &nbsp; &#8658; &nbsp; Aussage 1 trifft zu.  
 +
*Der Eingangswert $u_i^{(1)}$ beeinflusst die Ausgänge $x_i^{(1)}$, $x_i^{(2)}$ und $x_i^{(4)}$. Damit lautet die erste Zeile von $\mathbf{G}_0 \text{:} \, 1 \ 1 \ 0 \ 1$ &nbsp; &#8658; &nbsp; auch Aussage 2 trifft zu.  
 +
*Dagegen ist die Aussage 3 falsch: Nicht die erste Zeile von $\mathbf{G}_0$ lautet $1 \ 0 \ 0$, sondern die erste Spalte. Dies besagt, dass $x_i^{(1)}$ nur von $u_i^{(1)}$ abhängt, aber nicht von $u_i^{(2)}$ oder von $u_i^{(3)}$. Es handelt sich um einen systematischen Code.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; <u>Alle Aussagen sind zutreffend</u>:
 +
*Im Gleichungssatz kommt dreimal ein Eingangswert $u_{i&ndash;1}^{(j)}$ mit $j &#8712; \{1, 2, 3\}$ vor. Somit beinhaltet $\mathbf{G}_1$ insgesamt drei Einsen.
 +
*Der Eingangswert $u_{i-1}^{(2)}$ beeinflusst die Ausgänge $x_i^{(2)}$ und $x_i^{(3)}$, während $u_{i-1}^{(3)}$ nur für die Berechnung von $x_i^{(2)}$ herangezogen wird.  
  
  
'''(3)'''&nbsp; Im Gleichungssatz kommt dreimal ein Eingangswert $u_{i&ndash;1}^{(j)}$ mit $j &#8712; \{1, 2, 3\}$ vor. Somit beinhaltet $\mathbf{G}_1$ insgesamt drei Einsen. Der Eingangswert $u_{i&ndash;1}^{(2)}$ beeinflusst die Ausgänge $x_i^{(2)}$ und $x_i^{(3)}$, während $u_{i&ndash;1}^{(3)}$ nur für die Berechnung von $x_i^{(2)}$ herangezogen wird &#8658; <u>Alle Aussagen sind zutreffend</u>.
 
  
 +
'''(4)'''&nbsp; Richtig ist nur die <u> Aussage 3</u>:
 +
*Die folgende Grafik zeigt den linken oberen Beginn (die Zeilen 1 bis 9 sowie die Spalten 1 bis 12) der Generatormatrix $\mathbf{G}$.
 +
*Daraus ist ersichtlich, dass die beiden ersten Aussagen falsch sind .
 +
*Dieses Ergebnis gilt für jeden systematischen Code mit den Parametern $k = 3$ und $n = 4$.
  
'''(4)'''&nbsp; Die folgende Grafik zeigt den linken oberen Beginn (die Zeilen 1 bis 9 sowie die Spalten 1 bis 12) der Generatormatrix $\mathbf{G}$. Daraus ist ersichtlich, dass die beiden ersten Aussagen falsch sind im Gegensatz zur <u>Aussage 3</u>. Dieses Ergebnis gilt für jeden systematischen Code mit den Parametern $k = 3$ und $n = 4$.
 
  
[[Datei:P_ID2615__KC_A_3_2d_v1.png|center|frame|Generatormatrix eines Faltungscodes: $k = 4, \ n = 4, \ m = 2$]]
+
[[Datei:P_ID2615__KC_A_3_2d_v1.png|center|frame|Generatormatrix eines Faltungscodes mit&nbsp; $k = 4, \ n = 4, \ m = 2$]]
  
 +
'''(5)'''&nbsp; Richtig ist die <u> Aussage 2</u>:
 +
*Allgemein gilt $\underline{x} = \underline{u} \cdot \mathbf{G}$, wobei $\underline{u}$ und $\underline{x}$ Sequenzen sind, das heißt, dass sie sich bis ins Unendliche fortsetzen. Entsprechend ist die Generatormatrix $\mathbf{G}$ weder nach unten noch nach rechts begrenzt.
 +
*Bei begrenzter Informationssequenz $\underline{u}$ (hier auf $9$ Bit) ist auch die Codesequenz $\underline{x}$ begrenzt.
 +
*Interessiert man sich nur für die ersten Bits, so genügt es, nur den linken oberen Ausschnitt der Generatormatrix wie in der Musterlösung zur Teilaufgabe (4) zu betrachten.
 +
*Anhand dieser Grafik kann auch das Ergebnis der Matrizengleichung $\underline{x} = \underline{u} \cdot \mathbf{G}$ abgelesen werden.
 +
*Richtig ist $\underline{x} = (0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, \ ...)$ und damit Antwort 2.
  
'''(5)'''&nbsp; Allgemein gilt $\underline{x} = \underline{u} \cdot \mathbf{G}$, wobei $\underline{u}$ und $\underline{x}$ Sequenzen sind, das heißt, dass sie sich bis ins Unendliche fortsetzen. Entsprechend ist die Generatormatrix $\mathbf{G}$ weder nach unten noch nach rechts begrenzt.
 
  
Bei begrenzter Informationssequenz $\underline{u}$ (hier auf $9 \ \rm Bit$) ist auch die Codesequenz $\underline{x}$ begrenzt. Interessiert man sich nur für die ersten Bits, so genügt es, nur den linken oberen Ausschnitt der Generatormatrix wie in der Musterlösung zur Teilaufgabe (4) zu betrachten. Anhand dieser Grafik kann auch das Ergebnis der Matrizengleichung $\underline{x} = \underline{u} \cdot \mathbf{G}$ abgelesen werden. Richtig ist $\underline{x} = (0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, \ ...)$ und damit <u>Antwort 2</u>. Das gleiche Ergebnis haben wir in [[Aufgaben:3.1_Analyse_eines_Faltungscoders| Aufgabe A3.1d]] erhalten.
+
Das gleiche Ergebnis haben wir in der Teilaufgabe '''(4)''' von  [[Aufgaben:Aufgabe_3.1:_Analyse_eines_Faltungscodierers| Aufgabe 3.1]] erhalten.
  
Dargestellt sind hier nur $9$ Informationsbits und $9 \cdot n/k = 12$ Codebits. Aufgrund der Teilmatrizen $\mathbf{G}_1$ und $\mathbf{G}_2$ würden sich hier aber auch die Codebits 13 bis 20 noch (teilweise) Einsen ergeben.
+
*Dargestellt sind hier nur $9$ Informationsbits und $9 \cdot n/k = 12$ Codebits. Aufgrund der Teilmatrizen $\mathbf{G}_1$ und $\mathbf{G}_2$ würden sich hier aber auch für die Codebits 13 bis 20 noch (teilweise) Einsen ergeben.
  
Die Codesequenz $\underline{x}$ setzt sich aus den vier Teilsequenzen $\underline{x}^{(1)}, \ ... , \ \underline{x}^{(4)}$ zusammen, die in der Grafik aufgrund unterschiedlicher Farbgebung abgelesen werden können.
+
*Die Codesequenz $\underline{x}$ setzt sich aus den vier Teilsequenzen $\underline{x}^{(1)}, \ \text{...} \ , \ \underline{x}^{(4)}$ zusammen, die in der Grafik aufgrund unterschiedlicher Farbgebung abgelesen werden können.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
[[Category:Aufgaben zu  Kanalcodierung|^3.2 Algebraische und polynomische Beschreibung^]]
+
[[Category:Aufgaben zu  Kanalcodierung|^3.2 Polynomische Beschreibung^]]

Aktuelle Version vom 4. Juni 2019, 17:13 Uhr

Vorgegebener Faltungscodierer

Wir betrachten wie in  Aufgabe 3.1  den nebenstehend gezeichneten Faltungscodierer der Rate  $3/4$. Dieser wird durch den folgenden Gleichungssatz charakterisiert:

$$x_i^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)} \hspace{0.05cm},$$
$$x_i^{(2)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)} + u_{i}^{(2)} + u_{i-1}^{(2)} + u_{i-1}^{(3)} \hspace{0.05cm},$$
$$x_i^{(3)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(2)} + u_{i}^{(3)}+ u_{i-1}^{(2)} + u_{i-2}^{(3)} \hspace{0.05cm},$$
$$x_i^{(4)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)} + u_{i}^{(2)} + u_{i}^{(3)}+ u_{i-2}^{(3)}\hspace{0.05cm}.$$

Bezieht man sich auf die bei  $i = 1$  beginnenden und sich zeitlich bis ins Unendliche erstreckenden Sequenzen

$$\underline{\it u} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left ( \underline{\it u}_1, \underline{\it u}_2, \text{...} \hspace{0.1cm}, \underline{\it u}_i ,\text{...} \hspace{0.1cm} \right )\hspace{0.05cm},$$
$$\underline{\it x} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left ( \underline{\it x}_1, \underline{\it x}_2, \text{...} \hspace{0.1cm}, \underline{\it x}_i , \text{...} \hspace{0.1cm} \right )$$

mit  $\underline{u}_i = (u_i^{(1)}, u_i^{(2)}, \ \text{...} \ , u_i^{(k)})$  bzw.  $\underline{x}_i = (x_i^{(1)}, x_i^{(2)}, \ \text{...} \ , x_i^{(n)})$, so kann der Zusammenhang zwischen der Informationssequenz  $\underline{u}$  und der Codesequenz  $\underline{x}$  durch die Generatormatrix  $\mathbf{G}$  in folgender Form ausgedrückt werden:

$$\underline{x} = \underline{u} \cdot { \boldsymbol{\rm G}} \hspace{0.05cm}.$$

Für die Generatormatrix eines Faltungscoders mit dem Gedächtnis  $m$  ist dabei zu setzen:

$${ \boldsymbol{\rm G}}=\begin{pmatrix} { \boldsymbol{\rm G}}_0 & { \boldsymbol{\rm G}}_1 & { \boldsymbol{\rm G}}_2 & \cdots & { \boldsymbol{\rm G}}_m & & & \\ & { \boldsymbol{\rm G}}_0 & { \boldsymbol{\rm G}}_1 & { \boldsymbol{\rm G}}_2 & \cdots & { \boldsymbol{\rm G}}_m & &\\ & & { \boldsymbol{\rm G}}_0 & { \boldsymbol{\rm G}}_1 & { \boldsymbol{\rm G}}_2 & \cdots & { \boldsymbol{\rm G}}_m &\\ & & & \ddots & \ddots & & & \ddots \end{pmatrix}\hspace{0.05cm}.$$
  • Hierbei bezeichnen  $\mathbf{G}_0, \ \mathbf{G}_1, \ \mathbf{G}_2, \ \text{...}$  Teilmatrizen mit jeweils  $k$  Zeilen und  $n$  Spalten sowie binären Matrixelementen  $(0$  oder  $1)$.
  • Ist das Matrixelement  $\mathbf{G}_l(\kappa, j) = 1$, so bedeutet dies, dass das Codebit  $x_i^{(j)}$  durch das Informationsbit  $u_{i-l}^{(\kappa)}$  beeinflusst wird.
  • Andernfalls ist dieses Matrixelement gleich  $0$.


Ziel dieser Aufgabe ist es, die zur Informationssequenz

$$\underline{u} = (\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1 \hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm} ,\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm})$$

gehörige Codesequenz  $\underline{x}$  entsprechend den obigen Vorgaben zu berechnen. Das Ergebnis müsste mit dem Ergebnis von  Aufgabe 3.1  übereinstimmen, das allerdings auf anderem Wege erzielt wurde.





Hinweis:



Fragebogen

1

Aus wie vielen Teilmatrizen  $\mathbf{G}_l$  setzt sich die Matrix  $\mathbf{G}$  zusammen?

${\rm Anzahl \ der \ Teilmatrizen} \ = \ $

2

Welche Aussagen treffen für die Teilmatrix  $\mathbf{G}_0$  zu?

Insgesamt beinhaltet  $\mathbf{G}_0$  acht Einsen.
Die erste Zeile von  $\mathbf{G}_0$  lautet  $1 \ 1 \ 0 \ 1$.
Die erste Zeile von  $\mathbf{G}_0$  lautet  $1 \ 0 \ 0$.

3

Welche Aussagen treffen für die Teilmatrix  $\mathbf{G}_1$  zu?

Die erste Zeile lautet  $0 \ 0 \ 0 \ 0$.
Die zweite Zeile lautet  $0 \ 1 \ 1 \ 0$.
Die dritte Zeile lautet  $0 \ 1 \ 0 \ 0$.

4

Ermitteln Sie die ersten neun Zeilen und zwölf Spalten der Generatormatrix  $\mathbf{G}$. Welche Aussagen treffen zu?

Es gibt mindestens eine Zeile mit lauter Nullen.
Es gibt mindestens eine Zeile mit lauter Einsen.
In den Spalten  $1, 5, 9$  steht jeweils nur eine einzige Eins.

5

Welche Codesequenz  $\underline {x}$  ergibt sich für  $\underline {u} = (0, 1, 1, 1, 1, 0, 1, 0, 1)$?

Es gilt:  $\underline{x} = (1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, \ \text{...})$.
Es gilt:  $\underline{x} = (0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, \ \text{...})$.
Es gilt:  $\underline{x} = (0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, \ \text{...})$.


Musterlösung

(1)  Das Gedächtnis des betrachteten Faltungscodierers ist $m = 2$.

  • Damit setzt sich die Generatormatrix $\mathbf{G}$ aus den $m + 1 \ \underline {= 3}$ Teilmatrizen $\mathbf{G}_0, \mathbf{G}_1$ und $\mathbf{G}_2$ zusammen.


(2)  Richtig sind die Aussage 1 und 2:

  • Aus den angegebenen Gleichungen
$$x_i^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)} \hspace{0.05cm},$$
$$x_i^{(2)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)} + u_{i}^{(2)} + u_{i-1}^{(2)} + u_{i-1}^{(3)} \hspace{0.05cm},$$
$$x_i^{(3)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(2)} + u_{i}^{(3)}+ u_{i-1}^{(2)} + u_{i-2}^{(3)} \hspace{0.05cm},$$
$$x_i^{(4)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)} + u_{i}^{(2)} + u_{i}^{(3)}+ u_{i-2}^{(3)}$$

erkennt man, dass im gesamten Gleichungssatz genau achtmal ein Eingangswert $u_i^{(j)}$ mit $j ∈ \{1, 2, 3\}$ vorkommt   ⇒   Aussage 1 trifft zu.

  • Der Eingangswert $u_i^{(1)}$ beeinflusst die Ausgänge $x_i^{(1)}$, $x_i^{(2)}$ und $x_i^{(4)}$. Damit lautet die erste Zeile von $\mathbf{G}_0 \text{:} \, 1 \ 1 \ 0 \ 1$   ⇒   auch Aussage 2 trifft zu.
  • Dagegen ist die Aussage 3 falsch: Nicht die erste Zeile von $\mathbf{G}_0$ lautet $1 \ 0 \ 0$, sondern die erste Spalte. Dies besagt, dass $x_i^{(1)}$ nur von $u_i^{(1)}$ abhängt, aber nicht von $u_i^{(2)}$ oder von $u_i^{(3)}$. Es handelt sich um einen systematischen Code.


(3)  Alle Aussagen sind zutreffend:

  • Im Gleichungssatz kommt dreimal ein Eingangswert $u_{i–1}^{(j)}$ mit $j ∈ \{1, 2, 3\}$ vor. Somit beinhaltet $\mathbf{G}_1$ insgesamt drei Einsen.
  • Der Eingangswert $u_{i-1}^{(2)}$ beeinflusst die Ausgänge $x_i^{(2)}$ und $x_i^{(3)}$, während $u_{i-1}^{(3)}$ nur für die Berechnung von $x_i^{(2)}$ herangezogen wird.


(4)  Richtig ist nur die Aussage 3:

  • Die folgende Grafik zeigt den linken oberen Beginn (die Zeilen 1 bis 9 sowie die Spalten 1 bis 12) der Generatormatrix $\mathbf{G}$.
  • Daraus ist ersichtlich, dass die beiden ersten Aussagen falsch sind .
  • Dieses Ergebnis gilt für jeden systematischen Code mit den Parametern $k = 3$ und $n = 4$.


Generatormatrix eines Faltungscodes mit  $k = 4, \ n = 4, \ m = 2$

(5)  Richtig ist die Aussage 2:

  • Allgemein gilt $\underline{x} = \underline{u} \cdot \mathbf{G}$, wobei $\underline{u}$ und $\underline{x}$ Sequenzen sind, das heißt, dass sie sich bis ins Unendliche fortsetzen. Entsprechend ist die Generatormatrix $\mathbf{G}$ weder nach unten noch nach rechts begrenzt.
  • Bei begrenzter Informationssequenz $\underline{u}$ (hier auf $9$ Bit) ist auch die Codesequenz $\underline{x}$ begrenzt.
  • Interessiert man sich nur für die ersten Bits, so genügt es, nur den linken oberen Ausschnitt der Generatormatrix wie in der Musterlösung zur Teilaufgabe (4) zu betrachten.
  • Anhand dieser Grafik kann auch das Ergebnis der Matrizengleichung $\underline{x} = \underline{u} \cdot \mathbf{G}$ abgelesen werden.
  • Richtig ist $\underline{x} = (0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, \ ...)$ und damit Antwort 2.


Das gleiche Ergebnis haben wir in der Teilaufgabe (4) von Aufgabe 3.1 erhalten.

  • Dargestellt sind hier nur $9$ Informationsbits und $9 \cdot n/k = 12$ Codebits. Aufgrund der Teilmatrizen $\mathbf{G}_1$ und $\mathbf{G}_2$ würden sich hier aber auch für die Codebits 13 bis 20 noch (teilweise) Einsen ergeben.
  • Die Codesequenz $\underline{x}$ setzt sich aus den vier Teilsequenzen $\underline{x}^{(1)}, \ \text{...} \ , \ \underline{x}^{(4)}$ zusammen, die in der Grafik aufgrund unterschiedlicher Farbgebung abgelesen werden können.