Aufgaben:Aufgabe 3.2: G–Matrix eines Faltungscodierers: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 1: Zeile 1:
 
{{quiz-Header|Buchseite=Kanalcodierung/Algebraische und polynomische Beschreibung}}
 
{{quiz-Header|Buchseite=Kanalcodierung/Algebraische und polynomische Beschreibung}}
  
[[Datei:|right|]]
+
[[Datei:P_ID2614__KC_A_3_1_neu.png|right|frame|Vorgegebener Faltungscoder]]
 +
Wir betrachten wie in [[Aufgaben:3.1_Analyse_eines_Faltungscoders| Aufgabe A3.1]] den nebenstehend gezeichneten Faltungscodierer der Rate $3/4$. Dieser wird durch den folgenden Gleichungssatz charakterisiert:
 +
:$$x_i^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)}  \hspace{0.05cm},$$
 +
:$$x_i^{(2)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)} + u_{i}^{(2)} + u_{i-1}^{(2)} + u_{i-1}^{(3)} \hspace{0.05cm},$$
 +
:$$x_i^{(3)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(2)} + u_{i}^{(3)}+ u_{i-1}^{(2)} + u_{i-2}^{(3)} \hspace{0.05cm},$$
 +
:$$x_i^{(4)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)} + u_{i}^{(2)} + u_{i}^{(3)}+ u_{i-2}^{(3)}\hspace{0.05cm}.$$
  
 +
Bezieht man sich auf die bei $i = 1$ beginnenden und sich zeitlich bis ins Unendliche erstreckenden Sequenzen
 +
:$$\underline{\it u} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left ( \underline{\it u}_1, \underline{\it u}_2, ... \hspace{0.1cm}, \underline{\it u}_i , ... \hspace{0.1cm} \right )\hspace{0.05cm},$$
 +
:$$\underline{\it x} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left ( \underline{\it x}_1, \underline{\it x}_2, ... \hspace{0.1cm}, \underline{\it x}_i , ... \hspace{0.1cm} \right )$$
 +
 +
mit $\underline{u}_i = (u_i^{(1)}, u_i^{(2)}, \ ... \ , u_i^{(k)})$ bzw. $\underline{x}_i = (x_i^{(1)}, x_i^{(2)}, \ ... \ , x_i^{(n)})$, so kann der Zusammenhang zwischen der Informationssequenz $\underline{u}$ und der Codesequenz $\underline{x}$ durch die Generatormatrix $\mathbf{G} \ \boldsymbol{G}$ in folgender Form ausgedrückt werden:
 +
:$$\underline{x} = \underline{u} \cdot { \boldsymbol{\rm G}}  \hspace{0.05cm}.$$
 +
 +
Für die Generatormatrix eines Faltungscoders mit dem Gedächtnis $m$ ist dabei zu setzen:
 +
:$${ \boldsymbol{\rm G}}=\begin{pmatrix}
 +
{ \boldsymbol{\rm G}}_0 & { \boldsymbol{\rm G}}_1 & { \boldsymbol{\rm G}}_2 & \cdots  & { \boldsymbol{\rm G}}_m & & & \\
 +
& { \boldsymbol{\rm G}}_0 & { \boldsymbol{\rm G}}_1 & { \boldsymbol{\rm G}}_2 & \cdots & { \boldsymbol{\rm G}}_m & &\\
 +
&          & { \boldsymbol{\rm G}}_0 & { \boldsymbol{\rm G}}_1 & { \boldsymbol{\rm G}}_2 & \cdots & { \boldsymbol{\rm G}}_m &\\
 +
&          &          & \ddots  & \ddots & & & \ddots
 +
\end{pmatrix}\hspace{0.05cm}.$$
 +
 +
Hierbei bezeichnen $\boldsymbol{G}_0, \boldsymbol{G}_1, \boldsymbol{G}_2, \ ...$ Teilmatrizen mit jeweils $k$ Zeilen und $n$ Spalten sowie binären Matrixelementen ($0$ oder $1$). Ist das Matrixelement $\boldsymbol{G}_k(\kappa, j) = 1$, so bedeutet dies, dass das Codebit $x_i^{(j)}$ durch das Informationsbit $u_{i–l}^{(\kappa)}$ beeinflusst wird. Andernfalls ist dieses Matrixelement gleich $0$.
 +
 +
Ziel dieser Aufgabe ist es, die zur Informationssequenz
 +
:$$\underline{u} = (\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1
 +
\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm}
 +
,\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm})$$
 +
 +
gehörige Codesequenz $\underline{x}$ entsprechend den obigen Vorgaben zu berechnen. Das Ergebnis müsste mit dem Ergebnis von [[Aufgaben:3.1_Analyse_eines_Faltungscoders| Aufgabe A3.1]] übereinstimmen, das allerdings auf anderem Wege erzielt wurde.
 +
 +
''Hinweise:''
 +
* Die  Aufgabe gehört zum Themengebiet des Kapitels [[Kanalcodierung/Algebraische_und_polynomische_Beschreibung| Algebraische und polynomische Beschreibung]].
 +
* Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
  
  

Version vom 22. November 2017, 18:34 Uhr

Vorgegebener Faltungscoder

Wir betrachten wie in Aufgabe A3.1 den nebenstehend gezeichneten Faltungscodierer der Rate $3/4$. Dieser wird durch den folgenden Gleichungssatz charakterisiert:

$$x_i^{(1)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)} \hspace{0.05cm},$$
$$x_i^{(2)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)} + u_{i}^{(2)} + u_{i-1}^{(2)} + u_{i-1}^{(3)} \hspace{0.05cm},$$
$$x_i^{(3)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(2)} + u_{i}^{(3)}+ u_{i-1}^{(2)} + u_{i-2}^{(3)} \hspace{0.05cm},$$
$$x_i^{(4)} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} u_{i}^{(1)} + u_{i}^{(2)} + u_{i}^{(3)}+ u_{i-2}^{(3)}\hspace{0.05cm}.$$

Bezieht man sich auf die bei $i = 1$ beginnenden und sich zeitlich bis ins Unendliche erstreckenden Sequenzen

$$\underline{\it u} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left ( \underline{\it u}_1, \underline{\it u}_2, ... \hspace{0.1cm}, \underline{\it u}_i , ... \hspace{0.1cm} \right )\hspace{0.05cm},$$
$$\underline{\it x} \hspace{-0.15cm} \ = \ \hspace{-0.15cm} \left ( \underline{\it x}_1, \underline{\it x}_2, ... \hspace{0.1cm}, \underline{\it x}_i , ... \hspace{0.1cm} \right )$$

mit $\underline{u}_i = (u_i^{(1)}, u_i^{(2)}, \ ... \ , u_i^{(k)})$ bzw. $\underline{x}_i = (x_i^{(1)}, x_i^{(2)}, \ ... \ , x_i^{(n)})$, so kann der Zusammenhang zwischen der Informationssequenz $\underline{u}$ und der Codesequenz $\underline{x}$ durch die Generatormatrix $\mathbf{G} \ \boldsymbol{G}$ in folgender Form ausgedrückt werden:

$$\underline{x} = \underline{u} \cdot { \boldsymbol{\rm G}} \hspace{0.05cm}.$$

Für die Generatormatrix eines Faltungscoders mit dem Gedächtnis $m$ ist dabei zu setzen:

$${ \boldsymbol{\rm G}}=\begin{pmatrix} { \boldsymbol{\rm G}}_0 & { \boldsymbol{\rm G}}_1 & { \boldsymbol{\rm G}}_2 & \cdots & { \boldsymbol{\rm G}}_m & & & \\ & { \boldsymbol{\rm G}}_0 & { \boldsymbol{\rm G}}_1 & { \boldsymbol{\rm G}}_2 & \cdots & { \boldsymbol{\rm G}}_m & &\\ & & { \boldsymbol{\rm G}}_0 & { \boldsymbol{\rm G}}_1 & { \boldsymbol{\rm G}}_2 & \cdots & { \boldsymbol{\rm G}}_m &\\ & & & \ddots & \ddots & & & \ddots \end{pmatrix}\hspace{0.05cm}.$$

Hierbei bezeichnen $\boldsymbol{G}_0, \boldsymbol{G}_1, \boldsymbol{G}_2, \ ...$ Teilmatrizen mit jeweils $k$ Zeilen und $n$ Spalten sowie binären Matrixelementen ($0$ oder $1$). Ist das Matrixelement $\boldsymbol{G}_k(\kappa, j) = 1$, so bedeutet dies, dass das Codebit $x_i^{(j)}$ durch das Informationsbit $u_{i–l}^{(\kappa)}$ beeinflusst wird. Andernfalls ist dieses Matrixelement gleich $0$.

Ziel dieser Aufgabe ist es, die zur Informationssequenz

$$\underline{u} = (\hspace{0.05cm}0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 1 \hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm} ,\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm})$$

gehörige Codesequenz $\underline{x}$ entsprechend den obigen Vorgaben zu berechnen. Das Ergebnis müsste mit dem Ergebnis von Aufgabe A3.1 übereinstimmen, das allerdings auf anderem Wege erzielt wurde.

Hinweise:


Fragebogen

1

Multiple-Choice

correct
false

2

Input-Box Frage

$xyz \ = \ $

$ab$


Musterlösung

(1)  (2)  (3)  (4)  (5)