Aufgaben:Aufgabe 3.1Z: Spektrum des Dreieckimpulses: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(13 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:P_ID493__Sig_Z_3_1_neu.png|right|Dreieckimpuls ]]
+
[[Datei:P_ID493__Sig_Z_3_1_neu.png|right|frame|Dreieckimpuls]]
Betrachtet wird ein Dreieckimpuls ${x(t)}$, der im Bereich $–T ≤ t ≤ T$ durch folgende Gleichung beschrieben wird:
+
Betrachtet wird ein Dreieckimpuls  ${x(t)}$, der im Bereich  $–T ≤ t ≤ T$  durch folgende Gleichung beschrieben wird:
:$$x(t) = A \cdot \left( {1 - \frac{\left| \hspace{0.05cm}t \hspace{0.05cm}\right|}{T}} \right).$$
+
:$$x(t) = A \cdot \left( {1 - {\left| \hspace{0.05cm}t \hspace{0.05cm}\right|}/{T}} \right).$$
Die Impulsamplitude sei $A = 1\, \text{V}$, der Zeitparameter $T = 1 \text{ms}$. Für alle Zeiten $| t | > T$ ist ${x(t)} = 0$.
+
Die Impulsamplitude sei  $A = 1\, \text{V}$,  der Zeitparameter  $T = 1 \text{ ms}$.  Für alle Zeiten  $|\hspace{0.05cm} t \hspace{0.05cm} | > T$  ist  ${x(t)} = 0$.
  
Zur Berechnung der Spektralfunktionen ${X(f)}$ können Sie folgende Eigenschaften ausnutzen:
+
Zur Berechnung der Spektralfunktion  ${X(f)}$  können Sie folgende Eigenschaften ausnutzen:
  
 
* Die Zeitfunktion ist gerade und damit die Spektralfunktion reell:
 
* Die Zeitfunktion ist gerade und damit die Spektralfunktion reell:
:$$X\left( f \right) = \int_{ - \infty }^{ + \infty } {x(t)}  \cdot {\rm e}^{{\rm j}2\pi ft} {\rm d}t = 2 \cdot \int_0^{  \infty } {x(t)}  \cdot \cos \left( {2\pi ft} \right){\rm d}t.$$
+
:$$X\left( f \right) = \int_{ - \infty }^{ + \infty } {x(t)}  \cdot {\rm e}^{{\rm j}2\pi ft}\ {\rm d}t = 2 \cdot \int_0^{  \infty } {x(t)}  \cdot \cos \left( {2\pi ft} \right)\ {\rm d}t.$$
* Für $| t | > T$ besitzt ${x(t)}$ keine Anteile:
+
* Für  $|\hspace{0.05cm} t \hspace{0.05cm} | > T$ besitzt ${x(t)}$  keine Anteile:
 
:$$X\left( f \right) = 2 \cdot \int_0^T {x(t)}  \cdot \cos \left( {2\pi ft} \right){\rm d}t.$$
 
:$$X\left( f \right) = 2 \cdot \int_0^T {x(t)}  \cdot \cos \left( {2\pi ft} \right){\rm d}t.$$
 +
 +
 +
 +
 +
 +
 +
  
 
''Hinweise:''  
 
''Hinweise:''  
*Die Aufgabe gehört zum Kapitel [[Signaldarstellung/Fouriertransformation_und_-rücktransformation|Fouriertransformation und -rücktransformation]].
+
*Die Aufgabe gehört zum Kapitel  [[Signaldarstellung/Fouriertransformation_und_-rücktransformation|Fouriertransformation und –rücktransformation]].
*Weitere Informationen zu dieser Thematik liefert das Lernvideo [[Unterschiede und Gemeinsamkeiten von kontinuierlichen und diskreten Spektren]].
+
*Weitere Informationen zu dieser Thematik liefert das Lernvideo  [[Kontinuierliche_und_diskrete_Spektren_(Lernvideo)|Kontinuierliche und diskrete Spektren]].
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
+
 
*Zur Lösung dieser Aufgabe können Sie auf die folgenden Formeln zurückgreifen:
 
*Zur Lösung dieser Aufgabe können Sie auf die folgenden Formeln zurückgreifen:
:$$\int {t \cdot \cos \left( {\omega _0 t} \right){\rm d}t = \frac{{\cos \left( {\omega _0 t} \right)}}{\omega _0 ^2 }}  + \frac{{t \cdot \sin \left( {\omega _0 t} \right)}}{\omega _0 }, \hspace{0.5cm} \sin ^2 \left( \alpha  \right) = {1}/{2} \cdot \left( {1 - \cos \left( {2\alpha } \right)} \right).$$
+
:$$\int {t \cdot \cos \left( {\omega _0 t} \right)\ {\rm d}t = \frac{{\cos \left( {\omega _0 t} \right)}}{\omega _0 ^2 }}  + \frac{{t \cdot \sin \left( {\omega _0 t} \right)}}{\omega _0 }, $$
 +
:$$\sin ^2 \left( \alpha  \right) = {1}/{2} \cdot \left( {1 - \cos \left( {2\alpha } \right)} \right).$$
  
  
Zeile 26: Zeile 34:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie die Spektralfunktion ${X(f)}$. Welcher Spektralwert ergibt sich bei der Frequenz $f = 500 \,\text{Hz}$?
+
{Berechnen Sie die Spektralfunktion&nbsp; ${X(f)}$.&nbsp; Welcher Spektralwert ergibt sich bei der Frequenz $f = 500 \,\text{Hz}$?
 
|type="{}"}
 
|type="{}"}
$X(f = 500 \,\text{Hz})$ &nbsp;= { 0.405 3% } &nbsp;$\text{mV/Hz}$
+
$X(f = 500 \,\text{Hz}) \ = \ $ { 0.405 3% } &nbsp;$\text{mV/Hz}$
  
  
{Geben Sie die Spektralfunktion ${X(f)}$ unter Verwendung der Spaltfunktion $\text{si}(x) = \sin(x)/x$ an. Welcher Wert ergibt sich bei der Frequenz $f = 0$?
+
{Geben Sie die Spektralfunktion&nbsp; ${X(f)}$&nbsp; unter Verwendung der Spaltfunktion&nbsp; $\text{si}(x) = \sin(x)/x$&nbsp; an.&nbsp; Welcher Wert ergibt sich für $f = 0$?
 
|type="{}"}
 
|type="{}"}
$X(f = 0)$ = { 1 3% } &nbsp;$\text{mV/Hz}$
+
$X(f = 0) \ = \ $ { 1 3% } &nbsp;$\text{mV/Hz}$
  
  
{Bei welcher Frequenz $f = f_0$ hat das Spektrum ${X(f)}$ die erste Nullstelle?
+
{Bei welcher Frequenz&nbsp; $f = f_0$&nbsp; hat das Spektrum&nbsp; ${X(f)}$&nbsp; die erste Nullstelle?
 
|type="{}"}
 
|type="{}"}
$f_0$ = { 1 3% } &nbsp;$\text{kHz}$
+
$f_0 \ = \ $ { 1 3% } &nbsp;$\text{kHz}$
  
  
{Welche der beiden Aussagen sind zutreffend?
+
{Welche der folgenden Aussagen sind zutreffend?
 
|type="[]"}
 
|type="[]"}
+ Bei allen Vielfachen von $f_0$ hat das Spektrum Nullstellen.
+
+ Bei allen Vielfachen von $f_0$&nbsp; hat das Spektrum Nullstellen.
- Bei der Frequenz $f = 1.5 \cdot f_0$ ist die Spektralfunktion negativ.
+
- Bei der Frequenz&nbsp; $f = 1.5 \cdot f_0$&nbsp; ist die Spektralfunktion negativ.
  
 
</quiz>
 
</quiz>
Zeile 50: Zeile 58:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''  Unter Ausnutzung der genannten Symmetrieeigenschaften gilt mit der Abkürzung $\omega = 2\pi f$:
+
'''(1)'''&nbsp; Unter Ausnutzung der genannten Symmetrieeigenschaften gilt mit der Abkürzung&nbsp; $\omega = 2\pi f$:
:$$X(f) = 2A \cdot \int_0^T {\left( {1 - \frac{t}{T}} \right)}  \cdot \cos \left( {\omega t} \right){\rm d}t.$$
+
:$$X(f) = 2A \cdot \int_0^T {\left( {1 -{t}/{T}} \right)}  \cdot \cos \left( {\omega t} \right)\hspace{0.1cm}{\rm d}t.$$
Dieses Integral setzt sich aus zwei Anteilen zusammen:
+
*Dieses Integral setzt sich aus zwei Anteilen zusammen:
:$$X_1 (f) = 2A \cdot \int_0^T {\cos } \left( {\omega t} \right){\rm d}t =  \frac{2A}{\omega } \cdot \sin \left( {\omega T} \right),$$
+
:$$X_1 (f) = 2A \cdot \int_0^T {\cos } \left( {\omega t} \right)\hspace{0.1cm}{\rm d}t =  \frac{2A}{\omega } \cdot \sin \left( {\omega T} \right),$$
:$$X_2 (f) =  - \frac{2A}{T} \cdot \int_0^T {t \cdot \cos } \left( {\omega t} \right){\rm d}t =  - \frac{2A}{T} \cdot \left. {\left[ {\frac{{\cos \left( {\omega t} \right)}}{\omega ^2 } + \frac{{t \cdot \sin \left( {\omega t} \right)}}{\omega }} \right]} \right|_0^T  .$$
+
:$$X_2 (f) =  - \frac{2A}{T} \cdot \int_0^T {t \cdot \cos } \left( {\omega t} \right)\hspace{0.1cm}{\rm d}t =  - \frac{2A}{T} \cdot \left. {\left[ {\frac{{\cos \left( {\omega t} \right)}}{\omega ^2 } + \frac{{t \cdot \sin \left( {\omega t} \right)}}{\omega }} \right]} \right|_0^T  .$$
Unter Berücksichtigung von oberer und unterer Grenze erhält man:
+
*Unter Berücksichtigung von oberer und unterer Grenze erhält man:
 
:$$X_2 \left( f \right) =  - \frac{2A}{T} \cdot \left[ {\frac{{\cos \left( {\omega T} \right)}}{\omega ^2 } - \frac{1}{\omega ^2 } + \frac{{T \cdot \sin \left( {\omega T} \right)}}{\omega }} \right].$$
 
:$$X_2 \left( f \right) =  - \frac{2A}{T} \cdot \left[ {\frac{{\cos \left( {\omega T} \right)}}{\omega ^2 } - \frac{1}{\omega ^2 } + \frac{{T \cdot \sin \left( {\omega T} \right)}}{\omega }} \right].$$
Addiert man die beiden Anteile, so ergibt sich:
+
*Addiert man die beiden Anteile, so ergibt sich:
:$$X(f) = \frac{2A}{\omega ^2  \cdot T}\left[ {1 - \cos \left( {\omega T} \right)} \right] = \frac{A}{2\pi ^2 f^2 T} \cdot \left[ {1 - \cos \left( {2\pi fT} \right)} \right].$$
+
:$$X(f) = \frac{2A}{\omega ^2  \cdot T}\cdot \big[ {1 - \cos \left( {\omega T} \right)} \big] = \frac{A}{2\pi ^2 f^2 T} \cdot \big[ {1 - \cos \left( {2\pi fT} \right)} \big].$$
Bei der Frequenz $f = 1/(2T) = 500 \text{Hz}$ ist das Argument der Cosinusfunktion gleich $\pi$ und damit die Cosinusfunktion selbst gleich $–1$. Daraus folgt:
+
*Bei der Frequenz&nbsp; $f = 1/(2T) = 500 \,\text{Hz}$&nbsp; ist das Argument der Cosinusfunktion gleich&nbsp; $\pi$&nbsp; und die Cosinusfunktion selbst gleich&nbsp; $-1$.&nbsp; Daraus folgt:
:$$X( {f = \frac{1}{2T} = 500\;{\rm Hz}} ) = \frac{4}{\pi^2} \cdot A \cdot T  = \frac{4}{\pi^2} \cdot 1\;{\rm V} \cdot 10^{ - 3}\;{\rm s}\hspace{0.15 cm}\underline{= 0.405 \cdot 10^{ - 3} \;{\rm V/Hz}}.$$
+
:$$X( {f ={1}/{2T} = 500\;{\rm Hz}} ) = \frac{4}{\pi^2} \cdot A \cdot T  = \frac{4}{\pi^2} \cdot 1\;{\rm V} \cdot 10^{ - 3}\;{\rm s}\hspace{0.15 cm}\underline{= 0.405 \,{\rm mV/Hz}}.$$
 +
 
 +
 
  
'''2.''' Mit der trigonometrischen Umformung
+
'''(2)'''&nbsp; Mit der trigonometrischen Umformung&nbsp; ${1}/{2} \cdot (1 - \cos (2 \alpha)) = \sin^2(\alpha)$&nbsp; erhält man für die Spektralfunktion:
:$${1}/{2} \cdot (1 - \cos (2 \alpha)) = \sin^2(\alpha)$$
+
[[Datei:P_ID497__Sig_Z_3_1_d_neu.png|right|frame|$\rm si$-Quadrat-Spektrum]]
erhält man für die Spektralfunktion:
 
 
:$$X(f) = A \cdot T \cdot \frac{\sin^2(\pi f T)}{\pi^2 \cdot {f^2  \cdot T^2}} = A \cdot T \cdot {{{\rm si}^2(\pi f T)}}.$$
 
:$$X(f) = A \cdot T \cdot \frac{\sin^2(\pi f T)}{\pi^2 \cdot {f^2  \cdot T^2}} = A \cdot T \cdot {{{\rm si}^2(\pi f T)}}.$$
Bei der Frequenz $f = 0$ ist die si-Funktion gleich $1$. Daraus folgt:
+
*Bei der Frequenz&nbsp; $f = 0$&nbsp; ist die&nbsp; $\rm si$-Funktion gleich&nbsp; $1$. Daraus folgt:
:$$X( {f = 0} ) = A \cdot T \hspace{0.15 cm}\underline{= 10^{ - 3} \;{\rm V/Hz}}.$$
+
:$$X( {f = 0} ) = A \cdot T \hspace{0.15 cm}\underline{= 1\,{\rm mV/Hz}}.$$
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; Die erste Nullstelle tritt auf, wenn das Argument der&nbsp; $\rm si$-Funktion gleich&nbsp; $\pi$&nbsp; ist.
 +
*Daraus folgt&nbsp; $f_0 \cdot T = 1$&nbsp; bzw.&nbsp; $f_0 = 1/T \hspace{0.15 cm}\underline{= 1 \ \text{kHz}}$.
 +
 
 +
 
  
'''3.''' Die erste Nullstelle tritt auf, wenn das Argument der si-Funktion gleich $\pi$ ist. Daraus folgt $f_0 \cdot T = 1$ bzw. $f_0 = 1/T \underline{= 1 \text{kHz}}$.
+
'''(4)'''&nbsp; Richtig ist die <u>erste Aussage</u>:
 +
*Das Spektrum&nbsp; ${X(f)}$&nbsp; ist bei Vielfachen von&nbsp; $f_0$&nbsp; $(f = n \cdot f_0)$&nbsp; gleich&nbsp; ${\rm si}^2(n \cdot \pi) = 0$.  
 +
* Die zweite Aussage ist falsch:&nbsp; Bei keiner Frequenz&nbsp; $f$ &nbsp; ist&nbsp; ${X(f)} < 0$&nbsp; (siehe Skizze).
  
'''4.'''  Die Spektralfunktion $\text{X(f)}$ ist bei Vielfachen von $f_0$ ($f = n \cdot f_0$) gleich $si^2(n \cdot \pi) = 0$. Die erste Aussage trifft also zu im Gegensatz zur zweiten: Bei keiner Frequenz $f$ ist $\text{X(f)} < 0$ (siehe Skizze).
 
[[Datei:P_ID497__Sig_Z_3_1_d_neu.png|center|]]
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Aktuelle Version vom 21. April 2021, 15:16 Uhr

Dreieckimpuls

Betrachtet wird ein Dreieckimpuls  ${x(t)}$, der im Bereich  $–T ≤ t ≤ T$  durch folgende Gleichung beschrieben wird:

$$x(t) = A \cdot \left( {1 - {\left| \hspace{0.05cm}t \hspace{0.05cm}\right|}/{T}} \right).$$

Die Impulsamplitude sei  $A = 1\, \text{V}$,  der Zeitparameter  $T = 1 \text{ ms}$.  Für alle Zeiten  $|\hspace{0.05cm} t \hspace{0.05cm} | > T$  ist  ${x(t)} = 0$.

Zur Berechnung der Spektralfunktion  ${X(f)}$  können Sie folgende Eigenschaften ausnutzen:

  • Die Zeitfunktion ist gerade und damit die Spektralfunktion reell:
$$X\left( f \right) = \int_{ - \infty }^{ + \infty } {x(t)} \cdot {\rm e}^{{\rm j}2\pi ft}\ {\rm d}t = 2 \cdot \int_0^{ \infty } {x(t)} \cdot \cos \left( {2\pi ft} \right)\ {\rm d}t.$$
  • Für  $|\hspace{0.05cm} t \hspace{0.05cm} | > T$ besitzt ${x(t)}$  keine Anteile:
$$X\left( f \right) = 2 \cdot \int_0^T {x(t)} \cdot \cos \left( {2\pi ft} \right){\rm d}t.$$





Hinweise:

  • Zur Lösung dieser Aufgabe können Sie auf die folgenden Formeln zurückgreifen:
$$\int {t \cdot \cos \left( {\omega _0 t} \right)\ {\rm d}t = \frac{{\cos \left( {\omega _0 t} \right)}}{\omega _0 ^2 }} + \frac{{t \cdot \sin \left( {\omega _0 t} \right)}}{\omega _0 }, $$
$$\sin ^2 \left( \alpha \right) = {1}/{2} \cdot \left( {1 - \cos \left( {2\alpha } \right)} \right).$$


Fragebogen

1

Berechnen Sie die Spektralfunktion  ${X(f)}$.  Welcher Spektralwert ergibt sich bei der Frequenz $f = 500 \,\text{Hz}$?

$X(f = 500 \,\text{Hz}) \ = \ $

 $\text{mV/Hz}$

2

Geben Sie die Spektralfunktion  ${X(f)}$  unter Verwendung der Spaltfunktion  $\text{si}(x) = \sin(x)/x$  an.  Welcher Wert ergibt sich für $f = 0$?

$X(f = 0) \ = \ $

 $\text{mV/Hz}$

3

Bei welcher Frequenz  $f = f_0$  hat das Spektrum  ${X(f)}$  die erste Nullstelle?

$f_0 \ = \ $

 $\text{kHz}$

4

Welche der folgenden Aussagen sind zutreffend?

Bei allen Vielfachen von $f_0$  hat das Spektrum Nullstellen.
Bei der Frequenz  $f = 1.5 \cdot f_0$  ist die Spektralfunktion negativ.


Musterlösung

(1)  Unter Ausnutzung der genannten Symmetrieeigenschaften gilt mit der Abkürzung  $\omega = 2\pi f$:

$$X(f) = 2A \cdot \int_0^T {\left( {1 -{t}/{T}} \right)} \cdot \cos \left( {\omega t} \right)\hspace{0.1cm}{\rm d}t.$$
  • Dieses Integral setzt sich aus zwei Anteilen zusammen:
$$X_1 (f) = 2A \cdot \int_0^T {\cos } \left( {\omega t} \right)\hspace{0.1cm}{\rm d}t = \frac{2A}{\omega } \cdot \sin \left( {\omega T} \right),$$
$$X_2 (f) = - \frac{2A}{T} \cdot \int_0^T {t \cdot \cos } \left( {\omega t} \right)\hspace{0.1cm}{\rm d}t = - \frac{2A}{T} \cdot \left. {\left[ {\frac{{\cos \left( {\omega t} \right)}}{\omega ^2 } + \frac{{t \cdot \sin \left( {\omega t} \right)}}{\omega }} \right]} \right|_0^T .$$
  • Unter Berücksichtigung von oberer und unterer Grenze erhält man:
$$X_2 \left( f \right) = - \frac{2A}{T} \cdot \left[ {\frac{{\cos \left( {\omega T} \right)}}{\omega ^2 } - \frac{1}{\omega ^2 } + \frac{{T \cdot \sin \left( {\omega T} \right)}}{\omega }} \right].$$
  • Addiert man die beiden Anteile, so ergibt sich:
$$X(f) = \frac{2A}{\omega ^2 \cdot T}\cdot \big[ {1 - \cos \left( {\omega T} \right)} \big] = \frac{A}{2\pi ^2 f^2 T} \cdot \big[ {1 - \cos \left( {2\pi fT} \right)} \big].$$
  • Bei der Frequenz  $f = 1/(2T) = 500 \,\text{Hz}$  ist das Argument der Cosinusfunktion gleich  $\pi$  und die Cosinusfunktion selbst gleich  $-1$.  Daraus folgt:
$$X( {f ={1}/{2T} = 500\;{\rm Hz}} ) = \frac{4}{\pi^2} \cdot A \cdot T = \frac{4}{\pi^2} \cdot 1\;{\rm V} \cdot 10^{ - 3}\;{\rm s}\hspace{0.15 cm}\underline{= 0.405 \,{\rm mV/Hz}}.$$


(2)  Mit der trigonometrischen Umformung  ${1}/{2} \cdot (1 - \cos (2 \alpha)) = \sin^2(\alpha)$  erhält man für die Spektralfunktion:

$\rm si$-Quadrat-Spektrum
$$X(f) = A \cdot T \cdot \frac{\sin^2(\pi f T)}{\pi^2 \cdot {f^2 \cdot T^2}} = A \cdot T \cdot {{{\rm si}^2(\pi f T)}}.$$
  • Bei der Frequenz  $f = 0$  ist die  $\rm si$-Funktion gleich  $1$. Daraus folgt:
$$X( {f = 0} ) = A \cdot T \hspace{0.15 cm}\underline{= 1\,{\rm mV/Hz}}.$$


(3)  Die erste Nullstelle tritt auf, wenn das Argument der  $\rm si$-Funktion gleich  $\pi$  ist.

  • Daraus folgt  $f_0 \cdot T = 1$  bzw.  $f_0 = 1/T \hspace{0.15 cm}\underline{= 1 \ \text{kHz}}$.


(4)  Richtig ist die erste Aussage:

  • Das Spektrum  ${X(f)}$  ist bei Vielfachen von  $f_0$  $(f = n \cdot f_0)$  gleich  ${\rm si}^2(n \cdot \pi) = 0$.
  • Die zweite Aussage ist falsch:  Bei keiner Frequenz  $f$   ist  ${X(f)} < 0$  (siehe Skizze).