Aufgaben:Aufgabe 3.12: Cauchyverteilung: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 12: Zeile 12:
  
  
 
+
Hinweise:  
 
 
 
 
''Hinweise:''
 
 
*Die Aufgabe gehört zum  Kapitel  [[Stochastische_Signaltheorie/Weitere_Verteilungen|Weitere Verteilungen]].
 
*Die Aufgabe gehört zum  Kapitel  [[Stochastische_Signaltheorie/Weitere_Verteilungen|Weitere Verteilungen]].
*Insbesondere wird auf die Seite   [[Stochastische_Signaltheorie/Weitere_Verteilungen#Cauchyverteilung|Cauchyverteilung]]  Bezug genommen.
+
*Insbesondere wird auf die Seite   [[Stochastische_Signaltheorie/Weitere_Verteilungen#Cauchyverteilung|"Cauchyverteilung"]]  Bezug genommen.
 
   
 
   
  

Version vom 3. Februar 2022, 13:26 Uhr

WDF der Cauchyverteilung

Die Wahrscheinlichkeitsdichtefunktion der Cauchyverteilung ist wie folgt gegeben:

$$f_x(x)=\frac{\rm 1}{\rm 2 \pi}\cdot \frac{\rm 1}{\rm 1+ (\it x/\rm 2)^{\rm 2}}.$$

Aus der Grafik ist bereits der extrem langsame Abfall des WDF–Verlaufs zu erkennen.



Hinweise:



Fragebogen

1

Wie lautet die Verteilungsfunktion  $F_x(r)$?  Mit welcher Wahrscheinlichkeit ist  $x$  betragsmäßig kleiner als  $2$?

${\rm Pr} (|x| < 2) \ = \ $

$ \ \%$

2

Mit welcher Wahrscheinlichkeit ist  $x$  betragsmäßig größer als  $4$?

${\rm Pr} (|x| > 4) \ = \ $

$ \ \%$

3

Welche der folgenden Aussagen treffen für die Cauchyverteilung zu?

Die Cauchyverteilung besitzt eine unendlich große Varianz.
Die Tschebyscheff–Ungleichung macht hier keinen Sinn.
Eine in der Natur messbare Zufallsgröße ist nie cauchyverteilt.


Musterlösung

(1)  Vergleicht man die vorgegebene WDF mit der allgemeinen Gleichung im Theorieteil, so erkennt man, dass der Parameter  $\lambda= 2$  ist.

  • Daraus folgt  (nach Integration über die WDF):
$$F_x ( r ) =\frac{1}{2} + \frac{\rm 1}{\rm \pi}\cdot \rm arctan(\it r/\rm 2).$$
  • Insbesondere sind
$$F_x ( r = +2 ) =\frac{1}{2} + \frac{\rm 1}{\rm \pi}\cdot \rm arctan(1)=\frac{1}{2} + \frac{\rm 1}{\rm \pi} \cdot \frac{\rm \pi}{4 }=0.75,$$
$$F_x ( r = -2 ) =\frac{1}{2} + \frac{\rm 1}{\rm \pi}\cdot \rm arctan(-1)=\frac{1}{2} - \frac{\rm 1}{\rm \pi} \cdot \frac{\rm \pi}{4 }=0.25.$$
  • Die gesuchte Wahrscheinlichkeit ergibt sich als die Differenz zu
$${\rm Pr} (|x| < 2) = 0.75 - 0.25 \hspace{0.15cm}\underline{=50\%}.$$


(2)  Nach dem Ergebnis der Teilaufgabe  (1)  ist  $F_x ( r = 4 ) = 0.5 + 1/\pi = 0.852$.

  • Damit gilt für die „komplementäre” Wahrscheinlichkeit  ${\rm Pr} (x > 4)= 0.148$.
  • Die gesuchte Wahrscheinlichkeit ist aus Symmetriegründen doppelt so groß:
$${\rm Pr} (|x| >4) \hspace{0.15cm}\underline{ = 29.6\%}.$$


(3)  Alle Lösungsvorschläge treffen zu:

  • Für die Varianz der Cauchyverteilung gilt nämlich:
$$\sigma_x^{\rm 2}=\frac{1}{2\pi}\int_{-\infty}^{+\infty} \hspace{-0.15cm} \frac{\it x^{\rm 2}}{\rm 1+(\it x/\rm 2)^{\rm 2}} \,\,{\rm d}x.$$
  • Für große  $x$  liefert der Integrand den konstanten Wert  $4$. Deshalb divergiert das Integral.
  • Mit  $\sigma_x \to \infty$  liefert aber auch die Tschebyscheffsche Ungleichung keine auswertbare Schranke.
  • „Natürliche“ Zufallsgrößen (physikalisch interpretierbar) können nie cauchyverteilt sein, da sie sonst eine unendlich große Leistung besitzen müssten.
  • Dagegen unterliegt eine „künstliche“ (oder mathematische) Zufallsgröße  (Beispiel:   der Quotient zweier mittelwertfreier Gaußgrößen)  nicht dieser Beschränkung.