Aufgaben:Aufgabe 3.11: Tschebyscheffsche Ungleichung: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 48: Zeile 48:
  
  
{Es gelte&nbsp; $k = 1, \ 2, \ 3, \ 4$.&nbsp; Geben Sie die Überschreitungswahrscheinlichkeit&nbsp; $p_k = {\rm Pr}(|x -m_x | \ge k \cdot \sigma_x)$&nbsp; für die <u>Gau&szlig;verteilung</u> an.&nbsp; Wie gro&szlig; ist&nbsp; $p_3$?
+
{Es gelte&nbsp; $k = 1, \ 2, \ 3, \ 4$.&nbsp; Geben Sie die Überschreitungswahrscheinlichkeit&nbsp; $p_k = {\rm Pr}(|x -m_x | \ge k \cdot \sigma_x)$&nbsp; für die &nbsp; <u>Gau&szlig;verteilung</u>&nbsp; an.&nbsp; Wie gro&szlig; ist&nbsp; $p_3$?
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(|x -m_x | \ge 3 \sigma_x) \ = \ $ { 0.26 3% } $\ \%$
 
${\rm Pr}(|x -m_x | \ge 3 \sigma_x) \ = \ $ { 0.26 3% } $\ \%$
  
  
{Welche Überschreitungswahrscheinlichkeiten&nbsp;  $p_k$&nbsp; ergeben sich bei der&nbsp; <u>Exponentialverteilung</u>.&nbsp; Hier gilt &nbsp; $m_x = \sigma_x = 1/\lambda$.&nbsp; Wie gro&szlig; ist&nbsp; $p_3$?
+
{Welche Überschreitungswahrscheinlichkeiten&nbsp;  $p_k$&nbsp; ergeben sich bei der &nbsp; <u>Exponentialverteilung</u>.&nbsp; Hier gilt &nbsp; $m_x = \sigma_x = 1/\lambda$.&nbsp; Wie gro&szlig; ist&nbsp; $p_3$?
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(|x -m_x | \ge 3 \sigma_x) \ = \ $ { 1.83 3% } $\ \%$
 
${\rm Pr}(|x -m_x | \ge 3 \sigma_x) \ = \ $ { 1.83 3% } $\ \%$
Zeile 63: Zeile 63:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind <u>die Lösungsvorschläge 2 und 3</u>:
+
'''(1)'''&nbsp; Richtig sind&nbsp; <u>die Lösungsvorschläge 2 und 3</u>:
 
*Die erste Aussage ist falsch.&nbsp; Die Tschebyscheffsche Ungleichung liefert hier die Schranke&nbsp; $1/9$.  
 
*Die erste Aussage ist falsch.&nbsp; Die Tschebyscheffsche Ungleichung liefert hier die Schranke&nbsp; $1/9$.  
 
*Bei keiner Verteilung kann die hier betrachtete Wahrscheinlichkeit gleich&nbsp; $1/4$&nbsp; sein.  
 
*Bei keiner Verteilung kann die hier betrachtete Wahrscheinlichkeit gleich&nbsp; $1/4$&nbsp; sein.  
Zeile 69: Zeile 69:
 
*Die letzte Aussage ist zutreffend.&nbsp; Beispielsweise gilt bei der Gleichverteilung:
 
*Die letzte Aussage ist zutreffend.&nbsp; Beispielsweise gilt bei der Gleichverteilung:
 
:$${\rm Pr}(| x- m_x | \ge \varepsilon)=\left\{ \begin{array}{*{4}{c}} 1-{\varepsilon}/{\varepsilon_{\rm 0}} & \rm f\ddot{u}r\hspace{0.1cm}{\it \varepsilon<\varepsilon_{\rm 0}=\sqrt{\rm 3}\cdot\sigma_x},\\\rm 0 & \rm sonst. \end{array} \right. $$
 
:$${\rm Pr}(| x- m_x | \ge \varepsilon)=\left\{ \begin{array}{*{4}{c}} 1-{\varepsilon}/{\varepsilon_{\rm 0}} & \rm f\ddot{u}r\hspace{0.1cm}{\it \varepsilon<\varepsilon_{\rm 0}=\sqrt{\rm 3}\cdot\sigma_x},\\\rm 0 & \rm sonst. \end{array} \right. $$
 +
  
 
'''(2)'''&nbsp; Bei der Gau&szlig;verteilung gilt:
 
'''(2)'''&nbsp; Bei der Gau&szlig;verteilung gilt:
 
:$$p_k={\rm Pr}(| x-m_x| \ge k\cdot\sigma_{x})=\rm 2\cdot \rm Q(\it k).$$
 
:$$p_k={\rm Pr}(| x-m_x| \ge k\cdot\sigma_{x})=\rm 2\cdot \rm Q(\it k).$$
  
*Daraus ergeben sich folgende Zahlenwerte&nbsp; (in Klammern: &nbsp; Schranke nach Tschebyscheff):
+
*Daraus ergeben sich folgende Zahlenwerte&nbsp; $($in Klammern: &nbsp; Schranke nach Tschebyscheff$)$:
 
:$$k= 1\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge \sigma_{x}) = 31.7 \% \hspace{0.3cm}(100 \%),$$
 
:$$k= 1\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge \sigma_{x}) = 31.7 \% \hspace{0.3cm}(100 \%),$$
 
:$$k= 2\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge 2 \cdot \sigma_{x}) = 4.54 \% \hspace{0.3cm}(25 \%),$$
 
:$$k= 2\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge 2 \cdot \sigma_{x}) = 4.54 \% \hspace{0.3cm}(25 \%),$$
 
:$$k= 3\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge 3 \cdot\sigma_{x})\hspace{0.15cm}\underline{ = 0.26 \%} \hspace{0.3cm}(11.1 \%),$$
 
:$$k= 3\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge 3 \cdot\sigma_{x})\hspace{0.15cm}\underline{ = 0.26 \%} \hspace{0.3cm}(11.1 \%),$$
 
:$$k= 4\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge 4 \cdot \sigma_{x}) = 0.0064 \% \hspace{0.3cm}(6.25 \%).$$
 
:$$k= 4\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge 4 \cdot \sigma_{x}) = 0.0064 \% \hspace{0.3cm}(6.25 \%).$$
 +
  
 
'''(3)'''&nbsp; Ohne Einschr&auml;nkung der Allgemeing&uuml;ltigkeit setzen wir&nbsp; $\lambda = 1$  
 
'''(3)'''&nbsp; Ohne Einschr&auml;nkung der Allgemeing&uuml;ltigkeit setzen wir&nbsp; $\lambda = 1$  

Version vom 3. Februar 2022, 13:58 Uhr

Beispielhafte Tschebyscheffsch–Schranke
Werte der komplementären Gaußschen Fehlerfunktion

Ist über eine Zufallsgröße  $x$  nichts weiter bekannt als nur

  • der Mittelwert  $m_x$  und
  • die Streuung  $\sigma_x$,


so gibt die  "Tschebyscheffsche Ungleichung"  eine obere Schranke für die Wahrscheinlichkeit an,  dass  $x$  betragsmäßig mehr als einen Wert  $\varepsilon$  von seinem Mittelwert  $m_x$  abweicht.

Diese Schranke lautet:

$${\rm Pr}(|x-m_x|\ge \varepsilon) \le {\sigma_x^{\rm 2}}/{\varepsilon^{\rm 2}}.$$

Zur Erläuterung:

  • In der Grafik ist diese obere Schranke rot eingezeichnet.
  • Der grüne Kurvenverlauf zeigt die tatsächliche Wahrscheinlichkeit für die Gleichverteilung.
  • Die blauen Punkte gelten für die Exponentialverteilung.


Aus dieser Darstellung ist zu erkennen,  dass die  "Tschebyscheffsche Ungleichung"  nur eine sehr grobe Schranke darstellt. 

Sie sollte nur dann verwendet werden,  wenn von der Zufallsgröße wirklich nur der Mittelwert und die Streuung bekannt sind.



Hinweise:



Fragebogen

1

Welche der folgenden Aussagen sind zutreffend?

Vorstellbar ist eine Zufallsgröße mit  ${\rm Pr}(|x -m_x | \ge 3\sigma_x) = 1/4$.
"Tschebyscheff"  liefert für  $\varepsilon < \sigma_x$  keine Information.
${\rm Pr}(|x -m_x | \ge \sigma_x)$  ist für große  $\varepsilon$  identisch Null,  wenn  $x$  begrenzt ist.

2

Es gelte  $k = 1, \ 2, \ 3, \ 4$.  Geben Sie die Überschreitungswahrscheinlichkeit  $p_k = {\rm Pr}(|x -m_x | \ge k \cdot \sigma_x)$  für die   Gaußverteilung  an.  Wie groß ist  $p_3$?

${\rm Pr}(|x -m_x | \ge 3 \sigma_x) \ = \ $

$\ \%$

3

Welche Überschreitungswahrscheinlichkeiten  $p_k$  ergeben sich bei der   Exponentialverteilung.  Hier gilt   $m_x = \sigma_x = 1/\lambda$.  Wie groß ist  $p_3$?

${\rm Pr}(|x -m_x | \ge 3 \sigma_x) \ = \ $

$\ \%$


Musterlösung

(1)  Richtig sind  die Lösungsvorschläge 2 und 3:

  • Die erste Aussage ist falsch.  Die Tschebyscheffsche Ungleichung liefert hier die Schranke  $1/9$.
  • Bei keiner Verteilung kann die hier betrachtete Wahrscheinlichkeit gleich  $1/4$  sein.
  • Für  $\varepsilon < \sigma_x$  liefert Tschebyscheff eine Wahrscheinlichkeit größer als  $1$.  Diese Information ist nutzlos.
  • Die letzte Aussage ist zutreffend.  Beispielsweise gilt bei der Gleichverteilung:
$${\rm Pr}(| x- m_x | \ge \varepsilon)=\left\{ \begin{array}{*{4}{c}} 1-{\varepsilon}/{\varepsilon_{\rm 0}} & \rm f\ddot{u}r\hspace{0.1cm}{\it \varepsilon<\varepsilon_{\rm 0}=\sqrt{\rm 3}\cdot\sigma_x},\\\rm 0 & \rm sonst. \end{array} \right. $$


(2)  Bei der Gaußverteilung gilt:

$$p_k={\rm Pr}(| x-m_x| \ge k\cdot\sigma_{x})=\rm 2\cdot \rm Q(\it k).$$
  • Daraus ergeben sich folgende Zahlenwerte  $($in Klammern:   Schranke nach Tschebyscheff$)$:
$$k= 1\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge \sigma_{x}) = 31.7 \% \hspace{0.3cm}(100 \%),$$
$$k= 2\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge 2 \cdot \sigma_{x}) = 4.54 \% \hspace{0.3cm}(25 \%),$$
$$k= 3\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge 3 \cdot\sigma_{x})\hspace{0.15cm}\underline{ = 0.26 \%} \hspace{0.3cm}(11.1 \%),$$
$$k= 4\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge 4 \cdot \sigma_{x}) = 0.0064 \% \hspace{0.3cm}(6.25 \%).$$


(3)  Ohne Einschränkung der Allgemeingültigkeit setzen wir  $\lambda = 1$   ⇒   $m_x = \sigma_x = 1$.  Dann gilt:

$${\rm Pr}(|x - m_x| \ge k\cdot\sigma_{x}) = {\rm Pr}(| x-1| \ge k).$$
  • Da in diesem Sonderfall die Zufallsgröße stets  $x >0$  ist, gilt weiter:
$$p_k= {\rm Pr}( x \ge k+1)=\int_{k+\rm 1}^{\infty}\hspace{-0.15cm} {\rm e}^{-x}\, {\rm d} x={\rm e}^{-( k + 1)}.$$
  • Daraus ergeben sich für die Exponentialverteilung folgende Zahlenwerte:
$$k= 1\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge \sigma_{x}) \rm e^{-2}= \rm 13.53\%,$$
$$k= 2\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge 2 \cdot \sigma_{x})= \rm \rm e^{-3}=\rm 4.97\% ,$$
$$k= 3\text\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge 3 \cdot\sigma_{x})= \rm \rm e^{-4}\hspace{0.15cm}\underline{ =\rm 1.83\% },$$
$$k= 4\text{:}\hspace{0.5cm} {\rm Pr}(|x-m_x| \ge 4 \cdot \sigma_{x}) = \rm e^{-5}= \rm 0.67\%.$$