Aufgaben:Aufgabe 3.09: Korrelationsempfänger für unipolare Signalisierung: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Digitalsignalübertragung/3.7 Optimale Empfängerstrategien [[Datei:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple-Ch…“)
 
 
(25 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/3.7 Optimale Empfängerstrategien
+
{{quiz-Header|Buchseite=Digitalsignalübertragung/Optimale_Empfängerstrategien}}
  
 +
[[Datei:P_ID1464__Dig_A_3_9.png|right|frame|Beispielhafte Korrelationswerte]]
 +
Betrachtet wird die gemeinsame Entscheidung von &nbsp;$N = 3$&nbsp; Binärsymbolen&nbsp; ("Bit")&nbsp; mittels des Korrelationsempfängers.&nbsp; Die &nbsp;$M = 8$&nbsp; möglichen Quellensymbolfolgen &nbsp;$Q_i$&nbsp; besitzen alle die gleiche Wahrscheinlichkeit und sie sind durch die folgenden unipolaren Amplitudenkoeffizienten festgelegt:
 +
:$$Q_0 = 000, \hspace{0.15cm}Q_1 = 001,\hspace{0.15cm}Q_2 = 010,\hspace{0.15cm}Q_3 = 011
 +
\hspace{0.05cm},\hspace{0.15cm}
 +
Q_4 = 100, \hspace{0.15cm}Q_5 = 101,\hspace{0.15cm}Q_6 = 110,\hspace{0.15cm}Q_7 = 111
 +
\hspace{0.05cm}.$$
 +
 +
Weiter gilt:
 +
*Die möglichen Sendesignale &nbsp;$s_i(t)$&nbsp; &ndash; jeweils mit der Dauer &nbsp;$3T$&nbsp; &ndash; sind alle rechteckförmig mit Ausnahme von &nbsp;$s_0(t) \equiv 0$.
 +
 +
*Die Signale &nbsp;$s_1(t)$, &nbsp;$s_2(t)$&nbsp; und &nbsp;$s_4(t)$&nbsp; mit nur jeweils einer &bdquo;$1$&rdquo;&nbsp; besitzen die Signalenergie &nbsp;$E_{\rm B}$&nbsp; $($steht für &bdquo;Energie pro Bit&rdquo;$)$,&nbsp; während zum Beispiel die Energie von &nbsp;$s_7(t)$&nbsp; gleich &nbsp;$3E_{\rm B}$ ist.
 +
 +
 +
Der Korrelationsempfänger bildet aus dem verrauschten Empfangssignal &nbsp;$r(t) = s(t) + n(t)$&nbsp; insgesamt &nbsp;$2^3 = 8$&nbsp; Entscheidungsgrößen&nbsp; $($"Metriken"$)$
 +
:$$W_i  =  I_i  - {E_i}/{2 }\hspace{0.3cm}{\rm mit}\hspace{0.3cm}
 +
I_i =\int_{0}^{3T} r(t) \cdot s_i(t) \,{\rm d} t
 +
\hspace{0.3cm}( i = 0,\text{...} , 7)$$
 +
 +
und setzt die Sinkensymbolfolge &nbsp;$V = Q_j$,&nbsp; falls &nbsp;$W_j$&nbsp; größer ist als alle anderen &nbsp;$W_{i \ne j}$.&nbsp; Damit trifft er eine optimale Entscheidung im Sinne von Maximum&ndash;Likelihood.
 +
 +
 +
In der Tabelle sind die (unkorrigierten) Korrelationswerte &nbsp;$I_0, \ \text{...} \ , I_7$&nbsp; für drei verschiedene Systeme angegeben,&nbsp; die sich hinsichtlich der Störungen &nbsp;$n(t)$&nbsp; unterscheiden und mit &nbsp;$\rm A$, &nbsp;$\rm B$&nbsp; oder &nbsp;$\rm C$&nbsp; bezeichnet werden.
 +
*Eine dieser Spalten steht für &bdquo;keine Störungen&rdquo;,
 +
*eine für &bdquo;geringe Störungen&rdquo; und
 +
*eine weitere für &bdquo;starke Störungen&rdquo;.
 +
 +
 +
 +
 +
Hinweis:
 +
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Digitalsignal%C3%BCbertragung/Optimale_Empf%C3%A4ngerstrategien|"Optimale Empfängerstrategien"]].
 +
 +
*Zur Bestimmung der Metriken für die drei Systemvarianten wurde stets die gleiche Quellensymbolfolge gesendet.
 +
 +
  
[[Datei:|right|]]
 
  
  
 
===Fragebogen===
 
===Fragebogen===
 
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{Bei welchem System gibt es keine Störungen &nbsp;$n(t)$? Bei
|type="[]"}
+
|type="()"}
- Falsch
+
- $\rm System \ A$,
+ Richtig
+
+ $\rm System \ B$,
 +
- $\rm System \ C$.
  
 +
{Welche Quellensymbolfolge &nbsp;$Q_k &#8712; {Q_0, \ \text{...} \ , Q_7}$&nbsp; wurde tatsächtlich gesendet?
 +
|type="{}"}
 +
$k \ = \ $ { 2 }
  
{Input-Box Frage
+
{Welcher Entscheidungswert &nbsp;$W_j$&nbsp; ist bei System &nbsp;$\rm A$&nbsp; am größten?
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
${\rm System \ A} \text{:} \hspace{0.2cm} j \ = \ $ { 2 }
  
 +
{Welcher Entscheidungswert &nbsp;$W_j$&nbsp; ist beim System &nbsp;$\rm C$&nbsp; am größten?
 +
|type="{}"}
 +
${\rm System \ C} \text{:} \hspace{0.2cm} j \ = \ $ { 6 }
  
 +
{Bei welchem System treten die größten Störungen auf?&nbsp; Bei
 +
|type="()"}
 +
- $\rm System \ A$,
 +
- $\rm System \ B$,
 +
+ $\rm System \ C$.
  
 +
{Welche Aussagen gelten unter der Annahme,&nbsp; dass &nbsp;$Q_2$&nbsp; gesendet wurde und der Korrelationsempfänger sich normalerweise auch für &nbsp;$Q_2$&nbsp; entscheidet?
 +
|type="[]"}
 +
+ Die Differenz zwischen &nbsp;$W_2$&nbsp; und dem nächstgrößten Wert &nbsp;$W_{i \ne 2}$&nbsp; ist um so kleiner,&nbsp; je stärker die Störungen sind.
 +
- Wenn es zu einer Verfälschung kommt,&nbsp; dann entscheidet sich der Empfänger am wahrscheinlichsten für die Symbolfolge &nbsp;$Q_6$.
 +
+ Die Wahrscheinlichkeiten für fehlerhafte Entscheidungen zugunsten von &nbsp;$Q_0$, &nbsp;$Q_3$&nbsp; bzw. &nbsp;$Q_6$&nbsp; sind gleich.
 
</quiz>
 
</quiz>
  
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;
+
'''(1)'''&nbsp; Richtig ist der&nbsp; <u>Lösungsvorschlag 2</u>:
'''(2)'''&nbsp;
+
*Beim System &nbsp;$\rm B$&nbsp; treten viermal die Metrik&nbsp; $0$&nbsp; und viermal die Metrik&nbsp; $1$&nbsp; auf.
'''(3)'''&nbsp;
+
*Dies weist auf&nbsp; $n(t) = 0$&nbsp; hin,&nbsp; da sich sonst &ndash; wie bei den Systemen &nbsp;$\rm A$&nbsp; und &nbsp;$\rm C$&nbsp; &ndash; alle&nbsp; $I_i$&nbsp; unterscheiden müssten.
'''(4)'''&nbsp;
+
 
'''(5)'''&nbsp;
+
 
'''(6)'''&nbsp;
+
'''(2)'''&nbsp; Beim System &nbsp;$\rm B$&nbsp; ergeben sich folgende Entscheidungswerte&nbsp; $W_i = I_i \ &ndash; E_i/2$,&nbsp; jeweils normiert auf $E_{\rm B}$:
 +
:$$W_0 = 0 - 0 = 0, \hspace{0.2cm}W_1 = 0 - 0.5 = -0.5
 +
\hspace{0.05cm},$$
 +
:$$W_2 = 1 - 0.5 = 0.5, \hspace{0.2cm}W_3 = 1 - 1 = 0
 +
\hspace{0.05cm},$$
 +
:$$W_4 = 0 - 0.5 = -0.5, \hspace{0.2cm}W_5 = 0 - 1 = -1
 +
\hspace{0.05cm}.$$
 +
:$$W_6 = 1 - 1 = 0, \hspace{0.2cm}W_7 = 1 - 1.5  =
 +
-0.5
 +
\hspace{0.05cm}.$$
 +
 
 +
*Der maximale Wert&nbsp; $W_2 = 0.5$ &#8658; $i = 2$.
 +
*Der Korrelationsempfänger entscheidet sich also für&nbsp; $V = Q_2$.
 +
*Da keine Störungen auftreten,&nbsp; wurde tatsächtlich auch&nbsp; $Q_2 =$ &bdquo;$\rm 010$&rdquo;  gesendet &nbsp; &#8658; &nbsp; $\underline { k= 2}$.
 +
 
 +
 
 +
'''(3)'''&nbsp; Für die Entscheidungswerte von System &nbsp;$\rm A$&nbsp; gilt:
 +
:$$W_0 = 0.00 - 0.00 = 0.00, \hspace{0.2cm}W_1 = -0.07 - 0.50 = -0.57, $$
 +
:$$W_2 = 1.13 - 0.50 = 0.63, \hspace{0.2cm}W_3 = 1.06 - 1.00 = 0.06 \hspace{0.05cm},$$
 +
:$$W_4 = 0.05 - 0.50 = -0.45, \hspace{0.2cm}W_5 = -0.02 - 1.00 = -1.02\hspace{0.05cm},$$
 +
:$$W_6 = 1.18 - 1.00 = 0.18, \hspace{0.2cm}W_7 = 1.11 - 1.50  = -0.39 \hspace{0.05cm}.$$
 +
 
 +
*Das Maximum ist&nbsp; $W_j = W_2$ &nbsp; &#8658; &nbsp; $\underline { j= 2}$.
 +
*Das heißt,&nbsp; dass der Korrelationsempfänger auch bei System &nbsp;$\rm A$&nbsp; die richtige Entscheidung&nbsp; $V = Q_2$&nbsp; trifft.
 +
*Ohne den Korrekturterm&nbsp; $(&ndash; E_i/2)$&nbsp; hätte der Empfänger allerdings die falsche Entscheidung&nbsp; $V = Q_6$&nbsp; getroffen.
 +
 
 +
 
 +
'''(4)'''&nbsp; Der Korrelationsempfänger &nbsp;$\rm C$&nbsp; hat folgende Werte zu vergleichen:
 +
:$$W_0 = 0.00 - 0.00 = 0.00, \hspace{0.2cm}W_1 = -1.31 - 0.50 =
 +
-1.81
 +
\hspace{0.05cm},$$
 +
:$$W_2 = 3.59 - 0.50 = 3.09, \hspace{0.2cm}W_3 = 2.28 - 1.00 =
 +
1.28
 +
\hspace{0.05cm},$$
 +
:$$W_4 = 0.97 - 0.50 = 0.47, \hspace{0.2cm}W_5 = -0.34 - 1.00 =
 +
-1.34
 +
\hspace{0.05cm},$$
 +
:$$W_6 = 4.56 - 1.00 = 3.56, \hspace{0.2cm}W_7 = 3.25 - 1.50  =
 +
1.75
 +
\hspace{0.05cm}.$$
 +
 
 +
Die Maximierung ergibt hier&nbsp; $\underline {j = 6}$ &nbsp; &#8658; &nbsp; $V = Q_6$.
 +
*Da aber&nbsp; $Q_2$&nbsp; gesendet wurde,&nbsp; entscheidet hier der Korrelationsempfänger falsch.&nbsp; Die Störungen sind zu stark.
 +
 
 +
 
 +
 
 +
'''(5)'''&nbsp; Richtig ist der&nbsp; <u>Lösungsvorschlag 3</u>:
 +
*Die Störungen sind bei System &nbsp;$\rm C$&nbsp; am größten und für die aktuellen Empfangswerte sogar so groß,&nbsp; dass der Korrelationsempfänger eine Fehlentscheidung trifft.
 +
 
 +
 
 +
 
 +
'''(6)'''&nbsp; Richtig sind die&nbsp; <u>Aussagen 1 und 3</u>:
 +
*Im fehlerfreien Fall&nbsp; $($System &nbsp;$\rm B)$&nbsp; ist die Differenz zwischen&nbsp; $W_2 = 0.5$&nbsp; und den nächstgrößten Werten&nbsp; $W_0 = W_3 = W_6 = 0$&nbsp; jeweils gleich&nbsp; $D_{\hspace{0.02cm}\rm min} =0.5$.
 +
 +
*Bei System &nbsp;$\rm A$&nbsp; (leichte Störungen)&nbsp; ist die Differenz zwischen&nbsp; $W_2 = 0.63$&nbsp; und dem nächstgrößeren Wert&nbsp; $W_6 = 0.18$&nbsp; immerhin noch&nbsp; $D_{\hspace{0.02cm}\rm min} = 0.45$.
 +
 +
*Erhöht man die Rauschleistung um den Faktor&nbsp; $50$,&nbsp; so entscheidet der Korrelationsempfänger immer noch richtig,&nbsp; doch ist dann die minimale Differenz&nbsp; $D_{\hspace{0.02cm}\rm min} = 0.16$&nbsp; deutlich kleiner.
  
 +
*Für das System &nbsp;$\rm C$,&nbsp; bei dem der Korrelationsempfänger überfordert ist &nbsp; &rArr; &nbsp; Teilaufgabe '''(4)''',&nbsp; wurde eine gegenüber dem System &nbsp;$\rm A$&nbsp; um den Faktor&nbsp; $400$&nbsp; größere Rauschleistung zugrundegelegt.
 +
 +
*Entscheidet der Korrelationsempfänger die gesendete Folge&nbsp; $Q_2$&nbsp; falsch,&nbsp; so ist eine Verfälschung zu den Folgen&nbsp; $Q_0$,&nbsp; $Q_3$&nbsp; bzw.&nbsp; $Q_6$&nbsp; am wahrscheinlichsten,&nbsp; da sich alle diese drei Folgen von&nbsp; $Q_2$&nbsp; nur jeweils in einem Bit unterscheiden.
 +
 +
*Dass bei der beschriebenen Simulation&nbsp; $W_6$&nbsp; stets größer ist als&nbsp; $W_0$&nbsp; bzw.&nbsp; $W_3$,&nbsp; ist &bdquo;Zufall&rdquo; und sollte nicht überinterpretiert werden.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Aktuelle Version vom 1. Juli 2022, 13:55 Uhr

Beispielhafte Korrelationswerte

Betrachtet wird die gemeinsame Entscheidung von  $N = 3$  Binärsymbolen  ("Bit")  mittels des Korrelationsempfängers.  Die  $M = 8$  möglichen Quellensymbolfolgen  $Q_i$  besitzen alle die gleiche Wahrscheinlichkeit und sie sind durch die folgenden unipolaren Amplitudenkoeffizienten festgelegt:

$$Q_0 = 000, \hspace{0.15cm}Q_1 = 001,\hspace{0.15cm}Q_2 = 010,\hspace{0.15cm}Q_3 = 011 \hspace{0.05cm},\hspace{0.15cm} Q_4 = 100, \hspace{0.15cm}Q_5 = 101,\hspace{0.15cm}Q_6 = 110,\hspace{0.15cm}Q_7 = 111 \hspace{0.05cm}.$$

Weiter gilt:

  • Die möglichen Sendesignale  $s_i(t)$  – jeweils mit der Dauer  $3T$  – sind alle rechteckförmig mit Ausnahme von  $s_0(t) \equiv 0$.
  • Die Signale  $s_1(t)$,  $s_2(t)$  und  $s_4(t)$  mit nur jeweils einer „$1$”  besitzen die Signalenergie  $E_{\rm B}$  $($steht für „Energie pro Bit”$)$,  während zum Beispiel die Energie von  $s_7(t)$  gleich  $3E_{\rm B}$ ist.


Der Korrelationsempfänger bildet aus dem verrauschten Empfangssignal  $r(t) = s(t) + n(t)$  insgesamt  $2^3 = 8$  Entscheidungsgrößen  $($"Metriken"$)$

$$W_i = I_i - {E_i}/{2 }\hspace{0.3cm}{\rm mit}\hspace{0.3cm} I_i =\int_{0}^{3T} r(t) \cdot s_i(t) \,{\rm d} t \hspace{0.3cm}( i = 0,\text{...} , 7)$$

und setzt die Sinkensymbolfolge  $V = Q_j$,  falls  $W_j$  größer ist als alle anderen  $W_{i \ne j}$.  Damit trifft er eine optimale Entscheidung im Sinne von Maximum–Likelihood.


In der Tabelle sind die (unkorrigierten) Korrelationswerte  $I_0, \ \text{...} \ , I_7$  für drei verschiedene Systeme angegeben,  die sich hinsichtlich der Störungen  $n(t)$  unterscheiden und mit  $\rm A$,  $\rm B$  oder  $\rm C$  bezeichnet werden.

  • Eine dieser Spalten steht für „keine Störungen”,
  • eine für „geringe Störungen” und
  • eine weitere für „starke Störungen”.



Hinweis:

  • Zur Bestimmung der Metriken für die drei Systemvarianten wurde stets die gleiche Quellensymbolfolge gesendet.



Fragebogen

1

Bei welchem System gibt es keine Störungen  $n(t)$? Bei

$\rm System \ A$,
$\rm System \ B$,
$\rm System \ C$.

2

Welche Quellensymbolfolge  $Q_k ∈ {Q_0, \ \text{...} \ , Q_7}$  wurde tatsächtlich gesendet?

$k \ = \ $

3

Welcher Entscheidungswert  $W_j$  ist bei System  $\rm A$  am größten?

${\rm System \ A} \text{:} \hspace{0.2cm} j \ = \ $

4

Welcher Entscheidungswert  $W_j$  ist beim System  $\rm C$  am größten?

${\rm System \ C} \text{:} \hspace{0.2cm} j \ = \ $

5

Bei welchem System treten die größten Störungen auf?  Bei

$\rm System \ A$,
$\rm System \ B$,
$\rm System \ C$.

6

Welche Aussagen gelten unter der Annahme,  dass  $Q_2$  gesendet wurde und der Korrelationsempfänger sich normalerweise auch für  $Q_2$  entscheidet?

Die Differenz zwischen  $W_2$  und dem nächstgrößten Wert  $W_{i \ne 2}$  ist um so kleiner,  je stärker die Störungen sind.
Wenn es zu einer Verfälschung kommt,  dann entscheidet sich der Empfänger am wahrscheinlichsten für die Symbolfolge  $Q_6$.
Die Wahrscheinlichkeiten für fehlerhafte Entscheidungen zugunsten von  $Q_0$,  $Q_3$  bzw.  $Q_6$  sind gleich.


Musterlösung

(1)  Richtig ist der  Lösungsvorschlag 2:

  • Beim System  $\rm B$  treten viermal die Metrik  $0$  und viermal die Metrik  $1$  auf.
  • Dies weist auf  $n(t) = 0$  hin,  da sich sonst – wie bei den Systemen  $\rm A$  und  $\rm C$  – alle  $I_i$  unterscheiden müssten.


(2)  Beim System  $\rm B$  ergeben sich folgende Entscheidungswerte  $W_i = I_i \ – E_i/2$,  jeweils normiert auf $E_{\rm B}$:

$$W_0 = 0 - 0 = 0, \hspace{0.2cm}W_1 = 0 - 0.5 = -0.5 \hspace{0.05cm},$$
$$W_2 = 1 - 0.5 = 0.5, \hspace{0.2cm}W_3 = 1 - 1 = 0 \hspace{0.05cm},$$
$$W_4 = 0 - 0.5 = -0.5, \hspace{0.2cm}W_5 = 0 - 1 = -1 \hspace{0.05cm}.$$
$$W_6 = 1 - 1 = 0, \hspace{0.2cm}W_7 = 1 - 1.5 = -0.5 \hspace{0.05cm}.$$
  • Der maximale Wert  $W_2 = 0.5$ ⇒ $i = 2$.
  • Der Korrelationsempfänger entscheidet sich also für  $V = Q_2$.
  • Da keine Störungen auftreten,  wurde tatsächtlich auch  $Q_2 =$ „$\rm 010$” gesendet   ⇒   $\underline { k= 2}$.


(3)  Für die Entscheidungswerte von System  $\rm A$  gilt:

$$W_0 = 0.00 - 0.00 = 0.00, \hspace{0.2cm}W_1 = -0.07 - 0.50 = -0.57, $$
$$W_2 = 1.13 - 0.50 = 0.63, \hspace{0.2cm}W_3 = 1.06 - 1.00 = 0.06 \hspace{0.05cm},$$
$$W_4 = 0.05 - 0.50 = -0.45, \hspace{0.2cm}W_5 = -0.02 - 1.00 = -1.02\hspace{0.05cm},$$
$$W_6 = 1.18 - 1.00 = 0.18, \hspace{0.2cm}W_7 = 1.11 - 1.50 = -0.39 \hspace{0.05cm}.$$
  • Das Maximum ist  $W_j = W_2$   ⇒   $\underline { j= 2}$.
  • Das heißt,  dass der Korrelationsempfänger auch bei System  $\rm A$  die richtige Entscheidung  $V = Q_2$  trifft.
  • Ohne den Korrekturterm  $(– E_i/2)$  hätte der Empfänger allerdings die falsche Entscheidung  $V = Q_6$  getroffen.


(4)  Der Korrelationsempfänger  $\rm C$  hat folgende Werte zu vergleichen:

$$W_0 = 0.00 - 0.00 = 0.00, \hspace{0.2cm}W_1 = -1.31 - 0.50 = -1.81 \hspace{0.05cm},$$
$$W_2 = 3.59 - 0.50 = 3.09, \hspace{0.2cm}W_3 = 2.28 - 1.00 = 1.28 \hspace{0.05cm},$$
$$W_4 = 0.97 - 0.50 = 0.47, \hspace{0.2cm}W_5 = -0.34 - 1.00 = -1.34 \hspace{0.05cm},$$
$$W_6 = 4.56 - 1.00 = 3.56, \hspace{0.2cm}W_7 = 3.25 - 1.50 = 1.75 \hspace{0.05cm}.$$

Die Maximierung ergibt hier  $\underline {j = 6}$   ⇒   $V = Q_6$.

  • Da aber  $Q_2$  gesendet wurde,  entscheidet hier der Korrelationsempfänger falsch.  Die Störungen sind zu stark.


(5)  Richtig ist der  Lösungsvorschlag 3:

  • Die Störungen sind bei System  $\rm C$  am größten und für die aktuellen Empfangswerte sogar so groß,  dass der Korrelationsempfänger eine Fehlentscheidung trifft.


(6)  Richtig sind die  Aussagen 1 und 3:

  • Im fehlerfreien Fall  $($System  $\rm B)$  ist die Differenz zwischen  $W_2 = 0.5$  und den nächstgrößten Werten  $W_0 = W_3 = W_6 = 0$  jeweils gleich  $D_{\hspace{0.02cm}\rm min} =0.5$.
  • Bei System  $\rm A$  (leichte Störungen)  ist die Differenz zwischen  $W_2 = 0.63$  und dem nächstgrößeren Wert  $W_6 = 0.18$  immerhin noch  $D_{\hspace{0.02cm}\rm min} = 0.45$.
  • Erhöht man die Rauschleistung um den Faktor  $50$,  so entscheidet der Korrelationsempfänger immer noch richtig,  doch ist dann die minimale Differenz  $D_{\hspace{0.02cm}\rm min} = 0.16$  deutlich kleiner.
  • Für das System  $\rm C$,  bei dem der Korrelationsempfänger überfordert ist   ⇒   Teilaufgabe (4),  wurde eine gegenüber dem System  $\rm A$  um den Faktor  $400$  größere Rauschleistung zugrundegelegt.
  • Entscheidet der Korrelationsempfänger die gesendete Folge  $Q_2$  falsch,  so ist eine Verfälschung zu den Folgen  $Q_0$,  $Q_3$  bzw.  $Q_6$  am wahrscheinlichsten,  da sich alle diese drei Folgen von  $Q_2$  nur jeweils in einem Bit unterscheiden.
  • Dass bei der beschriebenen Simulation  $W_6$  stets größer ist als  $W_0$  bzw.  $W_3$,  ist „Zufall” und sollte nicht überinterpretiert werden.