Aufgaben:Aufgabe 3.09: Grundlegendes zum Viterbi–Algorithmus: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 63: Zeile 63:
 
:$$\underline{x}\hspace{0.03cm}' = \underline{0} = \big (00\hspace{0.05cm}, 00\hspace{0.05cm}, 00\hspace{0.05cm}, 00\hspace{0.05cm}, ... \hspace{0.1cm} \big ) \hspace{0.05cm},$$
 
:$$\underline{x}\hspace{0.03cm}' = \underline{0} = \big (00\hspace{0.05cm}, 00\hspace{0.05cm}, 00\hspace{0.05cm}, 00\hspace{0.05cm}, ... \hspace{0.1cm} \big ) \hspace{0.05cm},$$
  
ausgedrückt mit der Zustandsabfolge: $S_0 → S_0 → S_0 → S_0 → \ ... \ Eine der Folgen $\underline{x} ≠ \underline{0}$, die sich von $\underline{0} nur in der minimalen Anzahl an Codebits unterscheidet, folgt dem Pfad $S_0 → S_1 → S_0 → S_0 → \ ... \$ :
+
ausgedrückt mit der Zustandsabfolge: $S_0 → S_0 → S_0 → S_0 → \ ... \$ Eine der Folgen $\underline{x} ≠ \underline{0}$, die sich von $\underline{0} nur in der minimalen Anzahl an Codebits unterscheidet, folgt dem Pfad $S_0 → S_1 → S_0 → S_0 → \ ... \$ :
 
:$$\underline{x} = \big (11\hspace{0.05cm}, 01\hspace{0.05cm}, 00\hspace{0.05cm}, 00\hspace{0.05cm}, ... \hspace{0.1cm} \big )  
 
:$$\underline{x} = \big (11\hspace{0.05cm}, 01\hspace{0.05cm}, 00\hspace{0.05cm}, 00\hspace{0.05cm}, ... \hspace{0.1cm} \big )  
 
\hspace{0.3cm}\Rightarrow \hspace{0.3cm} d_{\rm F}\hspace{0.1cm}\underline{ = 3}
 
\hspace{0.3cm}\Rightarrow \hspace{0.3cm} d_{\rm F}\hspace{0.1cm}\underline{ = 3}

Version vom 3. Dezember 2017, 22:20 Uhr

Zu analysierendes Trellis

Die Grafik zeigt ein Trellisdiagramm und definiert gleichzeitig die Fehlergrößen ${\it \Gamma}_i(S_0)$ und ${\it \Gamma}_i(S_1)$ zu den Zeitpunkten $i = 0$ bis $i = 5$. Aus diesem Trellis können zum Beispiel abgelesen werden:

  • die Coderate $R$,
  • das Gedächtnis $m$,
  • die freie Distanz $d_{\rm F}$,
  • die Informationssequenzlänge $L$,
  • die Sequenzlänge $L'$ inklusive der Terminierung.


In der Aufgabe ist weiter zu klären:

  • die Bedeutung des Endwertes ${\it \Gamma}_5(S_0)$,
  • Auswirkungen von einem bzw. zwei Übertragungsfehlern.


Hinweise:

  • Die Aufgabe gehört zum Kapitel Decodierung von Faltungscodes.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.



Fragebogen

1

Welche der folgenden Aussagen werden durch das Trellis bestätigt?

Es handelt sich um einen Rate–1/2–Faltungscode.
Das Gedächtnis des Codes ist $m = 2$.
Der Faltungscode ist terminiert.
Die Länge der Informationssequenz ist $L = 5$.

2

Geben Sie die freie Distanz $d_{\rm F}$ des Faltungscodes an.

$d_{\rm F} \ = \ $

3

Welche Aussagen erlaubt der Endwert ${\it \Gamma}_5(S_0) = 0$ der Fehlergröße?

Es ist kein Übertragungsfehler aufgetreten.
Das Decodierergebnis $\underline{\upsilon}$ ist mit Sicherheit richtig (gleich $\underline{u}$).
Das Decodierergebnis minimiert die Wahrscheinlichkeit ${\rm Pr}(\underline{\upsilon} ≠ \underline{u}$).

4

Welche Aussagen treffen bei einem einzigen Übertragungsfehler zu?

Der Fehlergrößenendwert ist ${\it \Gamma}_5(S_0) = 1$.
Das Decodierergebnis $\underline{\upsilon}$ ist mit Sicherheit richtig (gleich $\underline{u}$).
Das Decodierergebnis minimiert die Wahrscheinlichkeit ${\rm Pr}(\underline{\upsilon} ≠ \underline{u}$).

5

Welche Aussagen treffen bei zwei Übertragungsfehlern zu?

Der Fehlergrößenendwert ist ${\it \Gamma}_5(S_0) = 2$.
Das Decodierergebnis $\underline{\upsilon}$ ist mit Sicherheit richtig (gleich $\underline{u}$).
Das Decodierergebnis $\underline{\upsilon}$ ist mit Sicherheit falsch (ungleich $\underline{u}$).


Musterlösung

(1)  Richtig sind die Lösungsvorschläge 1 und 3. Es gibt hier $2^{k \cdot m} = 2$ Zustände. Daraus folgt $k = 1$ und $m = 1$. Pro Codierschritt werden $n = 2$ Codebits ausgegeben  ⇒  $R = 1/2$. Die Informationssequenzlänge ist $L = 4$. Erst durch ein (da $m = 1$) zusätzliches Terminierungsbit kommt man zur Gesamtlänge $L' = 5$.


(2)  Die freie Distanz $d_{\rm F}$ ist definiert als die Anzahl der Codebits, in denen sich zwei Sequenzen $\underline{x}$ und $\underline{x'}$ unterscheiden. Als Bezugssequenz wählen wir die Nullsequenz:

$$\underline{x}\hspace{0.03cm}' = \underline{0} = \big (00\hspace{0.05cm}, 00\hspace{0.05cm}, 00\hspace{0.05cm}, 00\hspace{0.05cm}, ... \hspace{0.1cm} \big ) \hspace{0.05cm},$$

ausgedrückt mit der Zustandsabfolge: $S_0 → S_0 → S_0 → S_0 → \ ... \$ Eine der Folgen $\underline{x} ≠ \underline{0}$, die sich von $\underline{0} nur in der minimalen Anzahl an Codebits unterscheidet, folgt dem Pfad $S_0 → S_1 → S_0 → S_0 → \ ... \$ : :'"`UNIQ-MathJax19-QINU`"' '''(3)'''  Wird die Nullsequenz gesendet und diese auch empfangen, so kann die Viterbi–Decodierung durch das nachfolgende Trellis veranschaulicht werden. Der Endwert der Fehlergröße ist ${\it \Gamma}_5(S_0) = 0$, und der Viterbi–Decoder entscheidet mit Sicherheit richtig: $\underline{z} = \underline{x}  ⇒  \underline{\upsilon} = \underline{u}$. [[Datei:P_ID2660__KC_A_3_9c.png|center|frame|Trellis ohne Fehler/mit 3 Fehlern]] Für das untere Trellis gehen wir ebenfalls von $\underline{u} = (0, \, 0, \, 0, \, 0, \, 0)  ⇒  \underline{x} = (00, \, 00, \, 00, \, 00, \, 00)$ aus. Empfangen wird aber nun $\underline{y} = (00, \, 00, \, 00, \, 11, \, 01)$. Trotzdem gilt ${\it \Gamma}_5(S_0) = 0$. Das Beispiel belegt, dass die beiden ersten Aussagen falsch sind. Richtig ist hier nur der <u>Lösungsvorschlag 3</u>, da das Ereignis „Kein Übertragungsfehler” sehr viel wahrscheinlicher ist als drei Fehler an genau vorgegebenen Positionen. '''(4)'''  Richtig sind <u>alle Antworten</u>. Wenn man sicher weiß, dass nur ein Übertragungsfehler aufgetreten ist, funktioniert bei einem Faltungscode mit der freien Distanz $d_{\rm F} = 3$ der Viterbi–Algorithmus perfekt, egal, an welcher Position der Fehler aufgetreten ist.


(5)  Keiner der Lösungsvorschläge ist richtig, wie aus den nachfolgenden Beispielen zu erkennen ist.

Trellis mit 2 Fehlern