Aufgaben:Aufgabe 2.7: Nochmals Zweiwegekanal: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(6 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 4: Zeile 4:
  
 
[[Datei:P_ID914__LZI_A_2_7.png|right|frame|Betragsfrequenzgang und Phasenfunktion des Zweiwegekanals]]
 
[[Datei:P_ID914__LZI_A_2_7.png|right|frame|Betragsfrequenzgang und Phasenfunktion des Zweiwegekanals]]
Wie in [[Aufgaben:2.6_Zweiwegekanal|Aufgabe 2.6]] wird ein Zweiwegekanal betrachtet, für dessen Impulsantwort gelte:
+
Wie in  [[Aufgaben:2.6_Zweiwegekanal|Aufgabe 2.6]]  wird ein Zweiwegekanal betrachtet, für dessen Impulsantwort gelte:
 
:$$h(t) = \delta ( t - T_1) + \delta ( t - T_2).$$
 
:$$h(t) = \delta ( t - T_1) + \delta ( t - T_2).$$
  
Entgegen der allgemeinen Darstellung in Aufgabe 2.6 sind hier die beiden Dämpfungsfaktoren gleich: $z_1 = z_2 = 1$. Dies entspricht zum Beispiel beim Mobilfunk einem Echo im Abstand $T_2 - T_1$  in gleicher Stärke wie das Signal auf dem Hauptpfad. Für dieses wird die Laufzeit $T_1$ vorausgesetzt.
+
Entgegen der allgemeinen Darstellung in Aufgabe 2.6 sind hier die beiden Dämpfungsfaktoren gleich:   $z_1 = z_2 = 1$.  
 +
*Dies entspricht zum Beispiel beim Mobilfunk einem Echo im Abstand  $T_2 - T_1$  in gleicher Stärke wie das Signal auf dem Hauptpfad.  
 +
*Für dieses wird die Laufzeit  $T_1$  vorausgesetzt.
  
Mit den in den Teilaufgaben (1) ... (4)  betrachteten Laufzeiten $T_1 = 0$ und $T_2 = T = 4 \ \rm ms$ erhält man für den Frequenzgang des Zweiwegekanals, dessen Betrag in der oberen Grafik dargestellt ist:
+
 
 +
Mit den in den Teilaufgaben  '''(1)''' ... '''(4)'''  betrachteten Laufzeiten  $T_1 = 0$  und  $T_2 = T = 4 \ \rm ms$  erhält man für den Frequenzgang des Zweiwegekanals, dessen Betrag in der oberen Grafik dargestellt ist:
 
:$$H(f) = 1 +  {\rm e}^{-{\rm j}\hspace{0.04cm}2 \pi f T} = 1 +
 
:$$H(f) = 1 +  {\rm e}^{-{\rm j}\hspace{0.04cm}2 \pi f T} = 1 +
 
\cos(2 \pi f T) - {\rm j} \cdot \sin(2 \pi f T)$$
 
\cos(2 \pi f T) - {\rm j} \cdot \sin(2 \pi f T)$$
Zeile 15: Zeile 18:
 
T)\right)}= 2 \cdot |\cos(\pi f T)|.$$
 
T)\right)}= 2 \cdot |\cos(\pi f T)|.$$
  
Die untere Grafik zeigt die Phasenfunktion:
+
Die untere Grafik zeigt die Phasenfunktion für  $T_1 = 0$  und  $T_2 = T = 4 \ \rm ms$:
 
:$$b(f) = - {\rm arc} \hspace{0.1cm}H(f) = \arctan \frac{\sin(2 \pi f
 
:$$b(f) = - {\rm arc} \hspace{0.1cm}H(f) = \arctan \frac{\sin(2 \pi f
T)}{1 + \cos(2 \pi f T)} = \arctan \left(\tan(\pi f T)\right).$$
+
T)}{1 + \cos(2 \pi f T)} = \arctan \big[\tan(\pi f T)\big].$$
  
Hierbei wurde folgende trigonometrische Umformung benutzt:
+
*Im Frequenzbereich&nbsp; $|f| < 1/(2T)$&nbsp; steigt&nbsp; $b(f)$&nbsp; linear an: &nbsp; $b(f) = \pi \cdot f \cdot T.$
 +
*Auch in den weiteren Abschnitten der Phasenfunktion nimmt die Phase stets von&nbsp; $-\pi/2$&nbsp; bis&nbsp; $+\pi/2$&nbsp; linear zu.
 +
*Hierbei wurde folgende trigonometrische Umformung benutzt:
 
:$$ \frac{\sin(2 \alpha)}{1 + \cos(2 \alpha)} = \tan(\alpha).$$
 
:$$ \frac{\sin(2 \alpha)}{1 + \cos(2 \alpha)} = \tan(\alpha).$$
  
Die untere Grafik zeigt diePhasenfunktion für $T_1 = 0$ und $T_2 = T = 4 \ \rm ms$:
+
Im Fragenkatalog bezeichnet &nbsp;$y_i(t)$&nbsp; das Signal am Ausgang des Zweiwegekanals, wenn am Eingang das Signal &nbsp;$x_i(t)$&nbsp; anliegt&nbsp; $( i = 1, 2, 3, 4)$.  
*Im Frequenzbereich $|f| < 1/(2T)$ steigt $b(f)$ linear an: &nbsp; $b(f) = \pi \cdot f \cdot T.$
 
*Auch in den weiteren Abschnitten der Phasenfunktion nimmt die Phase stets von $-\pi/2$ bis $+\pi/2$ linear zu.
 
 
 
 
 
Im Fragenkatalog bezeichnet $y_i(t)$ das Signal am Ausgang des Zweiwegekanals, wenn am Eingang das Signal $x_i(t)$ anliegt ($ i = 1, 2, 3, 4$).  
 
  
 
Als Eingangssignale werden untersucht:
 
Als Eingangssignale werden untersucht:
*ein Rechteckimpuls $x_1(t)$ mit der Höhe $1$ zwischen $t= 0$ und $t= T$. Für $t < 0$ und $t > T$ ist $x_1(t) = 0$. An den beiden Sprungstellen tritt jeweils der Wert $0.5$ auf;
+
*ein Rechteckimpuls &nbsp;$x_1(t)$&nbsp; mit Höhe&nbsp; $1$&nbsp; zwischen &nbsp;$t= 0$&nbsp; und &nbsp;$t= T$;&nbsp; für &nbsp;$t < 0$&nbsp; und &nbsp;$t > T$&nbsp; ist &nbsp;$x_1(t) = 0$&nbsp; $($an den beiden Sprungstellen tritt jeweils der Wert $0.5$ auf$)$;
*ein Rechteckimpuls $x_2(t)$ mit Höhe $1$ im Bereich von $0 ...  2T$;
+
*ein Rechteckimpuls &nbsp;$x_2(t)$&nbsp; mit Höhe&nbsp; $1$&nbsp; im Bereich von&nbsp; $0 \ \text{...} \ 2T$;
*ein periodisches Rechtecksignal $x_3(t)$ mit der Periodendauer $T = T_0$:
+
*ein periodisches Rechtecksignal &nbsp;$x_3(t)$&nbsp; mit der Periodendauer &nbsp;$T = T_0$:
 
:$$x_3(t) = \left\{ \begin{array}{c} 1 \\
 
:$$x_3(t) = \left\{ \begin{array}{c} 1 \\
 
  0 \\  \end{array} \right.\quad \quad
 
  0 \\  \end{array} \right.\quad \quad
Zeile 40: Zeile 40:
 
{ T/2 < t  < T,}  \\
 
{ T/2 < t  < T,}  \\
 
\end{array}$$
 
\end{array}$$
*ein periodisches Rechtecksignal $x_4(t)$ mit der Periodendauer $T = 2T_0$:
+
*ein periodisches Rechtecksignal &nbsp;$x_4(t)$&nbsp; mit der Periodendauer &nbsp;$T = 2T_0$:
 
:$$x_4(t) = \left\{ \begin{array}{c} 1 \\
 
:$$x_4(t) = \left\{ \begin{array}{c} 1 \\
 
  0 \\  \end{array} \right.\quad \quad
 
  0 \\  \end{array} \right.\quad \quad
Zeile 53: Zeile 53:
  
  
''Hinweise:''
+
Hinweise:  
*Die Aufgabe gehört zum Kapitel  [[Lineare_zeitinvariante_Systeme/Lineare_Verzerrungen|Lineare Verzerrungen]].
+
*Die Aufgabe gehört zum Kapitel&nbsp; [[Lineare_zeitinvariante_Systeme/Lineare_Verzerrungen|Lineare Verzerrungen]].
*Für die Teilaufgaben (1) bis (4) gelte $T_1 = 0$ und $T_2 = T = 4 \ \rm ms$. In Teilaufgabe (5) wird der Fall $T_1 = 1 \ \rm ms$ und $T_2  = 5 \ \rm ms$ betrachtet.  
+
*Für die Teilaufgaben '''(1)''' bis '''(4)''' gelte &nbsp;$T_1 = 0$&nbsp; und &nbsp;$T_2 = T = 4 \ \rm ms$.
*Sollte die Eingabe des Zahlenwertes &bdquo;0&rdquo; erforderlich sein, so geben Sie bitte &bdquo;0.&rdquo; ein.
+
*In Teilaufgabe '''(5)''' wird der Fall &nbsp;$T_1 = 1 \ \rm ms$&nbsp; und &nbsp;$T_2  = 5 \ \rm ms$&nbsp; betrachtet.  
 +
  
  
Zeile 63: Zeile 64:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Berechnen Sie das Ausgangssignal $y_1(t)$ für das Eingangssignal $x_1(t)$. Welche der Aussagen sind zutreffend?
+
{Berechnen Sie das Ausgangssignal&nbsp; $y_1(t)$&nbsp; für das Eingangssignal&nbsp; $x_1(t)$.&nbsp; Welche der Aussagen sind zutreffend?
 
|type="[]"}
 
|type="[]"}
+ $y_1(t)$ ist wie $x_1(t)$ rechteckförmig.
+
+ $y_1(t)$&nbsp; ist wie&nbsp; $x_1(t)$&nbsp; rechteckförmig.
- $y_1(t)$  ist dreieckförmig.
+
- $y_1(t)$&nbsp; ist dreieckförmig.
+ Die absolute Impulsdauer ist $2T$.
+
+ Die absolute Impulsdauer ist&nbsp; $2T$.
+ $y_1(t)$ weist gegenüber $x_1(t)$ Dämpfungsverzerrungen auf.
+
+ $y_1(t)$&nbsp; weist gegenüber&nbsp; $x_1(t)$&nbsp; Dämpfungsverzerrungen auf.
+ $y_1(t)$ weist gegenüber $x_1(t)$ Phasenverzerrungen auf.
+
+ $y_1(t)$&nbsp; weist gegenüber&nbsp; $x_1(t)$&nbsp; Phasenverzerrungen auf.
  
  
{Berechnen Sie das Signal $y_2(t)$. Welche Werte ergeben sich zu den Zeitpunkten $t= 0.5 T$, $t= 1.5 T$ und $t= 2.5 T$?
+
{Berechnen Sie das Signal&nbsp; $y_2(t)$.&nbsp; Welche Werte ergeben sich zu den Zeitpunkten&nbsp; $t= 0.5 T$,&nbsp; $t= 1.5 T$&nbsp; und&nbsp; $t= 2.5 T$?
 
|type="{}"}
 
|type="{}"}
 
$y_2(t = 0.5T) \ = \ $  { 1 3% }
 
$y_2(t = 0.5T) \ = \ $  { 1 3% }
Zeile 79: Zeile 80:
  
  
{Berechnen Sie das Signal $y_3(t)$. Überprüfen Sie, welche Aussagen zutreffen.
+
{Berechnen Sie das Signal&nbsp; $y_3(t)$.&nbsp; Überprüfen Sie, welche Aussagen zutreffen.
 
|type="[]"}
 
|type="[]"}
+ $y_3(t)$ ist gegenüber $x_3(t)$ unverzerrt.
+
+ $y_3(t)$&nbsp; ist gegenüber&nbsp; $x_3(t)$&nbsp; unverzerrt.
- $y_3(t)$ weist gegenüber $x_3(t)$ Dämpfungsverzerrungen auf.
+
- $y_3(t)$&nbsp; weist gegenüber&nbsp; $x_3(t)$&nbsp; Dämpfungsverzerrungen auf.
- $y_3(t)$ weist gegenüber $x_3(t)$ Phasenverzerrungen auf.
+
- $y_3(t)$&nbsp; weist gegenüber&nbsp; $x_3(t)$&nbsp; Phasenverzerrungen auf.
  
  
{Welche Aussagen treffen für das Ausgangssignal <i>y</i><sub>4</sub>(<i>t</i>)  
+
{Welche Aussagen treffen für das Ausgangssignal&nbsp; $y_4(t)$&nbsp; zu?
zu?
 
 
|type="[]"}
 
|type="[]"}
- $y_4(t)$ ist gegenüber $x_4(t)$  unverzerrt.
+
- $y_4(t)$&nbsp; ist gegenüber&nbsp; $x_4(t)$&nbsp; unverzerrt.
+ $y_4(t)$  weist gegenüber $x_4(t)$ Dämpfungsverzerrungen auf.
+
+ $y_4(t)$&nbsp; weist gegenüber&nbsp; $x_4(t)$&nbsp; Dämpfungsverzerrungen auf.
- $y_4(t)$ ) weist gegenüber $x_4(t)$ Phasenverzerrungen auf.
+
- $y_4(t)$&nbsp;  weist gegenüber&nbsp; $x_4(t)$&nbsp; Phasenverzerrungen auf.
  
  
{Es gelte nun $T_1 = 1 \ \rm ms$ und $T_2  = 5 \ \rm ms$. Welche Veränderungen ergeben sich gegenüber den bisherigen Ergebnissen?
+
{Es gelte nun &nbsp;$T_1 = 1 \ \rm ms$&nbsp; und &nbsp;$T_2  = 5 \ \rm ms$.&nbsp; Welche Veränderungen ergeben sich gegenüber den bisherigen Ergebnissen?
 
|type="[]"}
 
|type="[]"}
 
+ Die obigen Aussagen hinsichtlich Verzerrungen sind weiterhin gültig.
 
+ Die obigen Aussagen hinsichtlich Verzerrungen sind weiterhin gültig.
 
- Fundierte Aussagen sind erst nach einer Neuberechnung möglich.
 
- Fundierte Aussagen sind erst nach einer Neuberechnung möglich.
- Die Kombination $T_1 = 1 \ \rm ms$ und $T_2  = 5 \ \rm ms$ führt bei allen Signalen zu Verzerrungen.
+
- Die Kombination &nbsp;$T_1 = 1 \ \rm ms$&nbsp; und &nbsp;$T_2  = 5 \ \rm ms$&nbsp; führt bei allen Signalen zu Verzerrungen.
  
  
Zeile 110: Zeile 110:
 
+ x_1(t) \star \delta (t - T) = x_1(t) + x_1(t-T).$$
 
+ x_1(t) \star \delta (t - T) = x_1(t) + x_1(t-T).$$
  
Somit ist $y_1(t)$ ein Rechteckimpuls der Höhe $1$ und der Breite $2T$.
+
*Somit ist&nbsp; $y_1(t)$&nbsp; ein Rechteckimpuls der Höhe&nbsp; $1$&nbsp; und der Breite&nbsp; $2T$.
  
Zum gleichen Ergebnis &ndash; aber zeitaufwändiger &ndash; kommt man durch die Berechnung im Spektralbereich:
+
*Zum gleichen Ergebnis &ndash; aber zeitaufwändiger &ndash; kommt man durch die Berechnung im Spektralbereich:
 
:$$Y_1(f) = X_1(f) \cdot H(f) = T  \cdot \frac {\sin(\pi f T)}{\pi f T}\cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} \pi f T} \cdot
 
:$$Y_1(f) = X_1(f) \cdot H(f) = T  \cdot \frac {\sin(\pi f T)}{\pi f T}\cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} \pi f T} \cdot
  \left[  1 + {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T} \right].$$
+
  \big[  1 + {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T} \big].$$
  
Die komplexen Exponentialfunktionen können mit dem [[Signaldarstellung/Zum_Rechnen_mit_komplexen_Zahlen#Darstellung_nach_Betrag_und_Phase|Satz von Euler]] wie folgt umgewandelt werden:
+
*Die komplexen Exponentialfunktionen können mit dem&nbsp; [[Signaldarstellung/Zum_Rechnen_mit_komplexen_Zahlen#Darstellung_nach_Betrag_und_Phase|Satz von Euler]]&nbsp; wie folgt umgewandelt werden:
 
:$${\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} \pi f T}
 
:$${\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} \pi f T}
  \left[  1 + {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T} \right] = {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T}
+
  \big[  1 + {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T} \big] = {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T}
  \cdot \left[  {\rm e}^{{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} \pi f T} + {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} \pi f T} \right] = {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T} \cdot 2 \cos(\pi f T) .$$
+
  \cdot \big[  {\rm e}^{{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} \pi f T} + {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} \pi f T} \big] = {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T} \cdot 2 \cos(\pi f T) .$$
  
Somit kann für das Ausgangsspektrum geschrieben werden:
+
*Somit kann für das Ausgangsspektrum geschrieben werden:
 
:$$Y_1(f) = Y_{11}(f) \cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T}
 
:$$Y_1(f) = Y_{11}(f) \cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T}
 
  , \; \; {\rm mit }  \; \;
 
  , \; \; {\rm mit }  \; \;
Zeile 128: Zeile 128:
  
 
[[Datei:P_ID925__LZI_A_2_7_a.png|right|frame|Eingangs– und Ausgangssignale]]
 
[[Datei:P_ID925__LZI_A_2_7_a.png|right|frame|Eingangs– und Ausgangssignale]]
Hierbei ist die $t = 0$ symmetrischen Rechteck der Breite $2T$. Durch die Phasenfunktion wird dieser in den Bereich $0$ ... $2T$ verschoben und das Ergebnis der Zeitbereichsberechnung bestätigt.
+
Hierbei ist die Beziehung &nbsp;$\sin(\alpha) \cdot \cos(\alpha) = \sin(2\alpha)/2$&nbsp; verwendet.
 +
 
 +
*Die Fourierrücktransformation von&nbsp; $Y_{11}(f)$&nbsp; führt zu einem um&nbsp;  $t = 0$&nbsp; symmetrischen Rechteck der Breite&nbsp; $2T$.  
 +
*Durch die Phasenfunktion wird dieser in den Bereich&nbsp; $0$ ... $2T$&nbsp; verschoben und das Ergebnis der Zeitbereichsberechnung bestätigt.
 +
 
 +
 
 +
Trotz der Tatsache, dass&nbsp; $y_1(t)$&nbsp; ebenso wie&nbsp; $x_1(t)$&nbsp; rechteckförmig ist, liegen Verzerrungen vor:
 +
*Wegen&nbsp; $T_y > T_x$&nbsp; sind diese linear.&nbsp; Im interessierenden Frequenzbereich&nbsp; $($das sind bei einem sinc&ndash;förmigem Spektrum alle Frequenzen$)$&nbsp; ist&nbsp; $|H(f)|$&nbsp; nicht konstant.&nbsp; Also gibt es Dämpfungsverzerrungen.
 +
*Da zudem die Phase nicht im gesamten Bereich linear mit&nbsp; $f$ ansteigt, gibt es auch Phasenverzerrungen &nbsp; &rArr; &nbsp; Richtig sind die <u> Lösungsvorschläge 1, 3, 4 und 5</u>.
  
Trotz der Tatsache, dass $y_1(t)$ ebenso wie $x_1(t)$ rechteckförmig ist, liegen hier Verzerrungen vor:
 
*Wegen $T_y > T_x$ sind diese linear. Im interessierenden Frequenzbereich (das sind bei einem si&ndash;förmigem Spektrum alle Frequenzen) ist $|H(f)|$ nicht konstant. Also gibt es Dämpfungsverzerrungen.
 
*Da zudem die Phase nicht im gesamten Bereich linear mit $f$ ansteigt, gibt es auch Phasenverzerrungen &nbsp;&rArr;&nbsp; Richtig sind die <u> Lösungsvorschläge 1, 3, 4 und 5</u>.
 
  
  
'''(2)'''&nbsp; Aufgrund der bereits in (1) angegebenen Gleichung
+
'''(2)'''&nbsp; Aufgrund der bereits in&nbsp; '''(1)'''&nbsp; angegebenen Gleichung
 
:$$y_2(t)  = x_2(t) + x_2(t-T)$$
 
:$$y_2(t)  = x_2(t) + x_2(t-T)$$
  
erhält man einen stufenförmigen Verlauf entsprechend zweiten Grafik. Die gesuchten Werte sind:
+
erhält man einen stufenförmigen Verlauf entsprechend dem unteren Diagramm der obere Grafik.  
:$$y_2(t = 0.5 T)  \hspace{0.15cm}\underline{= 1}, \hspace{0.3cm} y_2(t = 1.5 T)  \hspace{0.15cm}\underline{= 2},
 
\hspace{0.3cm}y_2(t = 2.5 T)  \hspace{0.15cm}\underline{ = 1}.$$
 
  
 +
Die gesuchten Zahlenwerte sind: &nbsp; $y_2(t = 0.5 T)  \hspace{0.15cm}\underline{= 1}, \hspace{0.3cm} y_2(t = 1.5 T)  \hspace{0.15cm}\underline{= 2},
 +
\hspace{0.3cm}y_2(t = 2.5 T)  \hspace{0.15cm}\underline{ = 1}.$
  
[[Datei:P_ID927__LZI_A_2_7_c.png|right|frame|Lösungen zu Aufgabe (3) und (4)]]
 
'''(3)'''&nbsp; Die Periodendauer $T_0 = T$ des periodischen Signals $x_3(t)$ ist genau so groß wie die Verzögerung auf dem zweiten Pfad. Deshalb ist $y_3(t) = 2 \cdot x_3(t) $ und es sind keine Verzerrungen feststellbar.
 
  
Die Spektralbereichsberechnung führt zum gleichen Ergebnis. $X_3(f)$ ist ein Linienspektrum mit Anteilen bei den Frequenzen $f  = 0$,  
+
[[Datei:P_ID927__LZI_A_2_7_c.png|right|frame|Lösungen&nbsp; '''(3)'''&nbsp; und&nbsp; '''(4)''']]
$f  =  \pm f_0 = \pm 1/T$, $f  =  \pm 3f_0$, usw.. Bei diesen diskreten Frequenzen gilt aber exakt:
+
'''(3)'''&nbsp; Die Periodendauer&nbsp; $T_0 = T$&nbsp; des periodischen Signals &nbsp;$x_3(t)$&nbsp; ist genau so groß wie die Verzögerung auf dem zweiten Pfad.&nbsp; Deshalb ist &nbsp;$y_3(t) = 2 \cdot x_3(t) $&nbsp; und es sind keine Verzerrungen feststellbar.
 +
 
 +
Die Spektralbereichsberechnung führt zum gleichen Ergebnis.  
 +
*$X_3(f)$&nbsp; ist ein Linienspektrum mit Anteilen bei den Frequenzen&nbsp; $f  = 0$,&nbsp; $f  =  \pm f_0 = \pm 1/T$,&nbsp; $f  =  \pm 3f_0$,&nbsp; usw..  
 +
*Bei diesen diskreten Frequenzen gilt aber exakt:
 
:$$|H(f)| = 2, \hspace{0.3cm} b(f) = 0 \hspace{0.3cm} \Rightarrow
 
:$$|H(f)| = 2, \hspace{0.3cm} b(f) = 0 \hspace{0.3cm} \Rightarrow
 
  \hspace{0.3cm}\tau_{\rm P}(f) = 0.$$
 
  \hspace{0.3cm}\tau_{\rm P}(f) = 0.$$
  
Auch daraus folgt wieder $y_3(t) = 2 \cdot x_3(t) $. Richtig ist somit nur der <u>Lösungsvorschlag 1</u>.
+
*Auch daraus folgt wieder&nbsp; $y_3(t) = 2 \cdot x_3(t) $.  
 +
*Richtig ist somit nur der <u>Lösungsvorschlag 1</u>.
  
  
'''(4)'''&nbsp; Aus der unteren Skizze der zweiten Grafik geht hervor, dass $y_4(t) = 1$ gegenüber $x_4(t)$ verzerrt ist. Dabei handelt es sich um Dämpfungsverzerrungen &nbsp;&#8658;&nbsp; <u>Lösungsvorschlag 2</u>, wie die folgende Überlegung zeigt.  
+
 
*Wegen $T_0 = 2T$ weist das Signal $x_4(t)$ die Grundfrequenz $f_0 = 1/(2T)$ auf.  
+
 
*Bei allen ungeraden Vielfachen von $f_0$ hat somit der Frequenzgang Nullstellen.  
+
'''(4)'''&nbsp; Aus der unteren Skizze der zweiten Grafik geht hervor, dass &nbsp;$y_4(t) = 1$&nbsp; gegenüber &nbsp;$x_4(t)$&nbsp; verzerrt ist.&nbsp; Dabei handelt es sich um Dämpfungsverzerrungen &nbsp;&#8658;&nbsp; <u>Lösungsvorschlag 2</u>,&nbsp; wie die folgende Überlegung zeigt.  
*Die einzige verbleibende Spektrallinie von  $Y_4(f)$ liegt bei $f = 0$, wobei gilt:
+
*Wegen&nbsp; $T_0 = 2T$&nbsp; weist das Signal &nbsp;$x_4(t)$&nbsp; die Grundfrequenz &nbsp;$f_0 = 1/(2T)$ auf.  
 +
*Bei allen ungeraden Vielfachen von &nbsp;$f_0$&nbsp; hat somit der Frequenzgang Nullstellen.  
 +
*Die einzige verbleibende Spektrallinie von  &nbsp;$Y_4(f)$&nbsp; liegt bei &nbsp;$f = 0$, wobei gilt:
 
:$$Y_4(f) = 2 \cdot 0.5 \cdot \delta (f) = 1 \cdot \delta (f)
 
:$$Y_4(f) = 2 \cdot 0.5 \cdot \delta (f) = 1 \cdot \delta (f)
 
\hspace{0.5cm}\Rightarrow \hspace{0.5cm} y_4(t) = 1.$$
 
\hspace{0.5cm}\Rightarrow \hspace{0.5cm} y_4(t) = 1.$$
  
  
'''(5)'''&nbsp; Der Frequenzgang lautet nun mit $T_1 = 1 \ \rm ms$, $T_2  = 5 \ \rm ms$ und $T = T_2 -T_1 = 4 \ \rm ms$:
+
 
 +
'''(5)'''&nbsp; Der Frequenzgang lautet nun mit &nbsp;$T_1 = 1 \ \rm ms$, &nbsp;$T_2  = 5 \ \rm ms$&nbsp; und &nbsp;$T = T_2 -T_1 = 4 \ \rm ms$:
 
:$$H(f) =  {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f
 
:$$H(f) =  {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f
 
  T_1}+ {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f
 
  T_1}+ {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f
  T_2}=  \left[  1 + {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T}
+
  T_2}=  \big[  1 + {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T}
  \right]\cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f
+
  \big]\cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f
 
  T_1}.$$
 
  T_1}.$$
  
Der Klammerausdruck beschreibt den bereits bisher betrachteten Frequenzgang. Der zweite Term bewirkt eine zusätzliche Laufzeit um $ \tau = T_1$, und es gilt für alle Signale ($i = 1, 2, 3, 4$):
+
*Der Klammerausdruck beschreibt den bereits bisher betrachteten Frequenzgang.  
$$y_i^{\rm (5)}(t) = y_i(t-T_1).$$
+
*Der zweite Term bewirkt eine zusätzliche Laufzeit um &nbsp;$ \tau = T_1$, und es gilt für alle Signale&nbsp; $(i = 1, 2, 3, 4)$:
 +
:$$y_i^{\rm (5)}(t) = y_i(t-T_1).$$
  
Alle Aussagen hinsichtlich der Verzerrungen sind weiter gültig. Dies entspricht dem <u>Lösungsvorschlag 1</u>.
+
Alle Aussagen hinsichtlich der Verzerrungen sind weiter gültig.&nbsp; Dies entspricht dem <u>Lösungsvorschlag 1</u>.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Aktuelle Version vom 6. Oktober 2021, 16:18 Uhr

Betragsfrequenzgang und Phasenfunktion des Zweiwegekanals

Wie in  Aufgabe 2.6  wird ein Zweiwegekanal betrachtet, für dessen Impulsantwort gelte:

$$h(t) = \delta ( t - T_1) + \delta ( t - T_2).$$

Entgegen der allgemeinen Darstellung in Aufgabe 2.6 sind hier die beiden Dämpfungsfaktoren gleich:   $z_1 = z_2 = 1$.

  • Dies entspricht zum Beispiel beim Mobilfunk einem Echo im Abstand  $T_2 - T_1$  in gleicher Stärke wie das Signal auf dem Hauptpfad.
  • Für dieses wird die Laufzeit  $T_1$  vorausgesetzt.


Mit den in den Teilaufgaben  (1) ... (4)  betrachteten Laufzeiten  $T_1 = 0$  und  $T_2 = T = 4 \ \rm ms$  erhält man für den Frequenzgang des Zweiwegekanals, dessen Betrag in der oberen Grafik dargestellt ist:

$$H(f) = 1 + {\rm e}^{-{\rm j}\hspace{0.04cm}2 \pi f T} = 1 + \cos(2 \pi f T) - {\rm j} \cdot \sin(2 \pi f T)$$
$$\Rightarrow \hspace{0.4cm}|H(f)| = \sqrt{2\left(1 + \cos(2 \pi f T)\right)}= 2 \cdot |\cos(\pi f T)|.$$

Die untere Grafik zeigt die Phasenfunktion für  $T_1 = 0$  und  $T_2 = T = 4 \ \rm ms$:

$$b(f) = - {\rm arc} \hspace{0.1cm}H(f) = \arctan \frac{\sin(2 \pi f T)}{1 + \cos(2 \pi f T)} = \arctan \big[\tan(\pi f T)\big].$$
  • Im Frequenzbereich  $|f| < 1/(2T)$  steigt  $b(f)$  linear an:   $b(f) = \pi \cdot f \cdot T.$
  • Auch in den weiteren Abschnitten der Phasenfunktion nimmt die Phase stets von  $-\pi/2$  bis  $+\pi/2$  linear zu.
  • Hierbei wurde folgende trigonometrische Umformung benutzt:
$$ \frac{\sin(2 \alpha)}{1 + \cos(2 \alpha)} = \tan(\alpha).$$

Im Fragenkatalog bezeichnet  $y_i(t)$  das Signal am Ausgang des Zweiwegekanals, wenn am Eingang das Signal  $x_i(t)$  anliegt  $( i = 1, 2, 3, 4)$.

Als Eingangssignale werden untersucht:

  • ein Rechteckimpuls  $x_1(t)$  mit Höhe  $1$  zwischen  $t= 0$  und  $t= T$;  für  $t < 0$  und  $t > T$  ist  $x_1(t) = 0$  $($an den beiden Sprungstellen tritt jeweils der Wert $0.5$ auf$)$;
  • ein Rechteckimpuls  $x_2(t)$  mit Höhe  $1$  im Bereich von  $0 \ \text{...} \ 2T$;
  • ein periodisches Rechtecksignal  $x_3(t)$  mit der Periodendauer  $T = T_0$:
$$x_3(t) = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \quad \begin{array}{c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} { 0 < t < T/2,} \\ { T/2 < t < T,} \\ \end{array}$$
  • ein periodisches Rechtecksignal  $x_4(t)$  mit der Periodendauer  $T = 2T_0$:
$$x_4(t) = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \quad \begin{array}{c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} { 0 < t < T,} \\ { T < t < 2T.} \\ \end{array}$$



Hinweise:

  • Die Aufgabe gehört zum Kapitel  Lineare Verzerrungen.
  • Für die Teilaufgaben (1) bis (4) gelte  $T_1 = 0$  und  $T_2 = T = 4 \ \rm ms$.
  • In Teilaufgabe (5) wird der Fall  $T_1 = 1 \ \rm ms$  und  $T_2 = 5 \ \rm ms$  betrachtet.



Fragebogen

1

Berechnen Sie das Ausgangssignal  $y_1(t)$  für das Eingangssignal  $x_1(t)$.  Welche der Aussagen sind zutreffend?

$y_1(t)$  ist wie  $x_1(t)$  rechteckförmig.
$y_1(t)$  ist dreieckförmig.
Die absolute Impulsdauer ist  $2T$.
$y_1(t)$  weist gegenüber  $x_1(t)$  Dämpfungsverzerrungen auf.
$y_1(t)$  weist gegenüber  $x_1(t)$  Phasenverzerrungen auf.

2

Berechnen Sie das Signal  $y_2(t)$.  Welche Werte ergeben sich zu den Zeitpunkten  $t= 0.5 T$,  $t= 1.5 T$  und  $t= 2.5 T$?

$y_2(t = 0.5T) \ = \ $

$y_2(t = 1.5T) \ = \ $

$y_2(t = 2.5T) \ = \ $

3

Berechnen Sie das Signal  $y_3(t)$.  Überprüfen Sie, welche Aussagen zutreffen.

$y_3(t)$  ist gegenüber  $x_3(t)$  unverzerrt.
$y_3(t)$  weist gegenüber  $x_3(t)$  Dämpfungsverzerrungen auf.
$y_3(t)$  weist gegenüber  $x_3(t)$  Phasenverzerrungen auf.

4

Welche Aussagen treffen für das Ausgangssignal  $y_4(t)$  zu?

$y_4(t)$  ist gegenüber  $x_4(t)$  unverzerrt.
$y_4(t)$  weist gegenüber  $x_4(t)$  Dämpfungsverzerrungen auf.
$y_4(t)$  weist gegenüber  $x_4(t)$  Phasenverzerrungen auf.

5

Es gelte nun  $T_1 = 1 \ \rm ms$  und  $T_2 = 5 \ \rm ms$.  Welche Veränderungen ergeben sich gegenüber den bisherigen Ergebnissen?

Die obigen Aussagen hinsichtlich Verzerrungen sind weiterhin gültig.
Fundierte Aussagen sind erst nach einer Neuberechnung möglich.
Die Kombination  $T_1 = 1 \ \rm ms$  und  $T_2 = 5 \ \rm ms$  führt bei allen Signalen zu Verzerrungen.


Musterlösung

(1)  Die Lösung im Zeitbereich führt schneller zum Endergebnis:

$$y_1(t) = x_1(t) \star h(t) = x_1(t) \star \delta (t) + x_1(t) \star \delta (t - T) = x_1(t) + x_1(t-T).$$
  • Somit ist  $y_1(t)$  ein Rechteckimpuls der Höhe  $1$  und der Breite  $2T$.
  • Zum gleichen Ergebnis – aber zeitaufwändiger – kommt man durch die Berechnung im Spektralbereich:
$$Y_1(f) = X_1(f) \cdot H(f) = T \cdot \frac {\sin(\pi f T)}{\pi f T}\cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} \pi f T} \cdot \big[ 1 + {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T} \big].$$
  • Die komplexen Exponentialfunktionen können mit dem  Satz von Euler  wie folgt umgewandelt werden:
$${\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} \pi f T} \big[ 1 + {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T} \big] = {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T} \cdot \big[ {\rm e}^{{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} \pi f T} + {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm} \pi f T} \big] = {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T} \cdot 2 \cos(\pi f T) .$$
  • Somit kann für das Ausgangsspektrum geschrieben werden:
$$Y_1(f) = Y_{11}(f) \cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T} , \; \; {\rm mit } \; \; Y_{11}(f) = 2T \cdot \frac {\sin(\pi f T) \cdot \cos(\pi f T)}{\pi f T} = 2T \cdot \frac {\sin(2\pi f T) }{2\pi f T}.$$
Eingangs– und Ausgangssignale

Hierbei ist die Beziehung  $\sin(\alpha) \cdot \cos(\alpha) = \sin(2\alpha)/2$  verwendet.

  • Die Fourierrücktransformation von  $Y_{11}(f)$  führt zu einem um  $t = 0$  symmetrischen Rechteck der Breite  $2T$.
  • Durch die Phasenfunktion wird dieser in den Bereich  $0$ ... $2T$  verschoben und das Ergebnis der Zeitbereichsberechnung bestätigt.


Trotz der Tatsache, dass  $y_1(t)$  ebenso wie  $x_1(t)$  rechteckförmig ist, liegen Verzerrungen vor:

  • Wegen  $T_y > T_x$  sind diese linear.  Im interessierenden Frequenzbereich  $($das sind bei einem sinc–förmigem Spektrum alle Frequenzen$)$  ist  $|H(f)|$  nicht konstant.  Also gibt es Dämpfungsverzerrungen.
  • Da zudem die Phase nicht im gesamten Bereich linear mit  $f$ ansteigt, gibt es auch Phasenverzerrungen   ⇒   Richtig sind die Lösungsvorschläge 1, 3, 4 und 5.


(2)  Aufgrund der bereits in  (1)  angegebenen Gleichung

$$y_2(t) = x_2(t) + x_2(t-T)$$

erhält man einen stufenförmigen Verlauf entsprechend dem unteren Diagramm der obere Grafik.

Die gesuchten Zahlenwerte sind:   $y_2(t = 0.5 T) \hspace{0.15cm}\underline{= 1}, \hspace{0.3cm} y_2(t = 1.5 T) \hspace{0.15cm}\underline{= 2}, \hspace{0.3cm}y_2(t = 2.5 T) \hspace{0.15cm}\underline{ = 1}.$


Lösungen  (3)  und  (4)

(3)  Die Periodendauer  $T_0 = T$  des periodischen Signals  $x_3(t)$  ist genau so groß wie die Verzögerung auf dem zweiten Pfad.  Deshalb ist  $y_3(t) = 2 \cdot x_3(t) $  und es sind keine Verzerrungen feststellbar.

Die Spektralbereichsberechnung führt zum gleichen Ergebnis.

  • $X_3(f)$  ist ein Linienspektrum mit Anteilen bei den Frequenzen  $f = 0$,  $f = \pm f_0 = \pm 1/T$,  $f = \pm 3f_0$,  usw..
  • Bei diesen diskreten Frequenzen gilt aber exakt:
$$|H(f)| = 2, \hspace{0.3cm} b(f) = 0 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\tau_{\rm P}(f) = 0.$$
  • Auch daraus folgt wieder  $y_3(t) = 2 \cdot x_3(t) $.
  • Richtig ist somit nur der Lösungsvorschlag 1.



(4)  Aus der unteren Skizze der zweiten Grafik geht hervor, dass  $y_4(t) = 1$  gegenüber  $x_4(t)$  verzerrt ist.  Dabei handelt es sich um Dämpfungsverzerrungen  ⇒  Lösungsvorschlag 2,  wie die folgende Überlegung zeigt.

  • Wegen  $T_0 = 2T$  weist das Signal  $x_4(t)$  die Grundfrequenz  $f_0 = 1/(2T)$ auf.
  • Bei allen ungeraden Vielfachen von  $f_0$  hat somit der Frequenzgang Nullstellen.
  • Die einzige verbleibende Spektrallinie von  $Y_4(f)$  liegt bei  $f = 0$, wobei gilt:
$$Y_4(f) = 2 \cdot 0.5 \cdot \delta (f) = 1 \cdot \delta (f) \hspace{0.5cm}\Rightarrow \hspace{0.5cm} y_4(t) = 1.$$


(5)  Der Frequenzgang lautet nun mit  $T_1 = 1 \ \rm ms$,  $T_2 = 5 \ \rm ms$  und  $T = T_2 -T_1 = 4 \ \rm ms$:

$$H(f) = {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T_1}+ {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T_2}= \big[ 1 + {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T} \big]\cdot {\rm e}^{-{\rm j}\hspace{0.05cm} \cdot \hspace{0.05cm}2 \pi f T_1}.$$
  • Der Klammerausdruck beschreibt den bereits bisher betrachteten Frequenzgang.
  • Der zweite Term bewirkt eine zusätzliche Laufzeit um  $ \tau = T_1$, und es gilt für alle Signale  $(i = 1, 2, 3, 4)$:
$$y_i^{\rm (5)}(t) = y_i(t-T_1).$$

Alle Aussagen hinsichtlich der Verzerrungen sind weiter gültig.  Dies entspricht dem Lösungsvorschlag 1.