Aufgaben:Aufgabe 2.6Z: Nochmals zum Huffman–Code: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
K (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “)
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:P_ID2453__Inf_Z_2_6.png|right|Drei Codes zur Auswahl ]]
+
[[Datei:P_ID2453__Inf_Z_2_6.png|right|frame|Drei Codes zur Auswahl ]]
 
Der Algorithmus von [https://de.wikipedia.org/wiki/David_A._Huffman David Albert Huffman] realisiert eine Entropiecodierung mit folgenden Eigenschaften:
 
Der Algorithmus von [https://de.wikipedia.org/wiki/David_A._Huffman David Albert Huffman] realisiert eine Entropiecodierung mit folgenden Eigenschaften:
  
Zeile 10: Zeile 10:
 
* Der Code führt bei gedächtnisloser Quelle zur kleinstmöglichen  mittleren Codewortlänge $L_{\rm M}$.
 
* Der Code führt bei gedächtnisloser Quelle zur kleinstmöglichen  mittleren Codewortlänge $L_{\rm M}$.
  
* $L_{\rm M}$ ist aber nie kleiner als die Quellenentropie $H$. Diese beiden Größen sind allein aus den $M$ Symbolwahrscheinlichkeiten berechenbar.
+
* $L_{\rm M}$ ist aber nie kleiner als die Quellenentropie $H$.  
 +
*Diese beiden Größen sind allein aus den $M$ Symbolwahrscheinlichkeiten berechenbar.
 +
 
 +
 
 +
Vorausgesetzt wird für diese Aufgabe eine gedächtnislose Quelle mit dem Symbolumfang $M = 5$ und dem Alphabet
 +
:$$\{ {\rm A}, {\rm B}, {\rm C}, {\rm D}, {\rm E} \}.$$
 +
 
 +
In obiger Grafik sind drei Codes vorgegeben. Sie sollen entscheiden, welche dieser Codes durch Anwendung des Huffman–Algorithmus entstanden sind (oder sein könnten).
 +
 
 +
 
  
Vorausgesetzt wird für diese Aufgabe eine gedächtnislose Quelle mit dem Symbolumfang $M = 5$ und dem Alphabet $\{$<b>A</b>, <b>B</b>, <b>C</b>, <b>D</b>, <b>E</b>$\}$. In obiger Grafik sind drei Codes vorgegeben. Sie sollen entscheiden, welche dieser Codes durch Anwendung des Huffman&ndash;Algorithmus entstanden sind (oder sein könnten).
 
  
  
Zeile 18: Zeile 26:
 
*Die Aufgabe gehört zum  Kapitel [[Informationstheorie/Entropiecodierung_nach_Huffman|Entropiecodierung nach Huffman]].
 
*Die Aufgabe gehört zum  Kapitel [[Informationstheorie/Entropiecodierung_nach_Huffman|Entropiecodierung nach Huffman]].
 
*Weitere Informationen zum Huffman&ndash;Algorithmus finden Sie auch im Angabenblatt zur [[Aufgaben:2.6_Zur_Huffman-Codierung|Aufgabe 2.6]].
 
*Weitere Informationen zum Huffman&ndash;Algorithmus finden Sie auch im Angabenblatt zur [[Aufgaben:2.6_Zur_Huffman-Codierung|Aufgabe 2.6]].
*Zur Kontrolle Ihrer Ergebnisse verweisen wir auf das Interaktionsmodul [[Shannon&ndash;Fano&ndash; und Huffman&ndash;Codierung]].
+
*Zur Kontrolle Ihrer Ergebnisse verweisen wir auf das Interaktionsmodul [[Applets:Huffman_Shannon_Fano|Shannon&ndash;Fano&ndash; und Huffman&ndash;Codierung]].
 
   
 
   
  
Zeile 32: Zeile 40:
  
  
{Wie stehen mittlere Codewortlänge $L_{\rm M}$ und Entropie $H$ bei den gegebenen Wahrscheinlichkeiten in Relation?
+
{Wie stehen die mittlere Codewortlänge $L_{\rm M}$ und die Entropie $H$ bei den gegebenen Wahrscheinlichkeiten in Relation?
 
|type="[]"}
 
|type="[]"}
 
- $L_{\rm M} < H$,
 
- $L_{\rm M} < H$,
Zeile 48: Zeile 56:
  
  
{Die in der Teilaufgabe (3) berechneten Wahrscheinlichkeiten gelten weiter. Die mittlere Codewortlänge wird aber nun für eine Folge der Länge $N = 40$ ermittelt &nbsp;&#8658;&nbsp; $L_{\rm M}'$. Was ist möglich?
+
{Die in der Teilaufgabe '''(3)''' berechneten Wahrscheinlichkeiten gelten weiter. <br>Die mittlere Codewortlänge wird aber nun für eine Folge der Länge $N = 40$ ermittelt &nbsp;&#8658;&nbsp; $L_{\rm M}\hspace{0.01cm}'$. Was ist möglich?
 
|type="[]"}
 
|type="[]"}
+ $L_{\rm M}' < L_{\rm M}$,
+
+ $L_{\rm M}\hspace{0.01cm}' < L_{\rm M}$,
+ $L_{\rm M}' = L_{\rm M}$,
+
+ $L_{\rm M}\hspace{0.01cm}' = L_{\rm M}$,
+ $L_{\rm M}' > L_{\rm M}$.
+
+ $L_{\rm M}\hspace{0.01cm}' > L_{\rm M}$.
  
  

Version vom 28. September 2018, 10:13 Uhr

Drei Codes zur Auswahl

Der Algorithmus von David Albert Huffman realisiert eine Entropiecodierung mit folgenden Eigenschaften:

  • Der entstehende Binärcode ist präfixfrei und somit in einfacher Weise (und sofort) decodierbar.
  • Der Code führt bei gedächtnisloser Quelle zur kleinstmöglichen mittleren Codewortlänge $L_{\rm M}$.
  • $L_{\rm M}$ ist aber nie kleiner als die Quellenentropie $H$.
  • Diese beiden Größen sind allein aus den $M$ Symbolwahrscheinlichkeiten berechenbar.


Vorausgesetzt wird für diese Aufgabe eine gedächtnislose Quelle mit dem Symbolumfang $M = 5$ und dem Alphabet

$$\{ {\rm A}, {\rm B}, {\rm C}, {\rm D}, {\rm E} \}.$$

In obiger Grafik sind drei Codes vorgegeben. Sie sollen entscheiden, welche dieser Codes durch Anwendung des Huffman–Algorithmus entstanden sind (oder sein könnten).



Hinweise:


Fragebogen

1

Welche Codes könnten entsprechend Huffman für $p_{\rm A} = p_{\rm B} = p_{\rm C} = 0.3$ und $p_{\rm D} = p_{\rm E} = 0.05$ entstanden sein?

$\text{Code 1}$,
$\text{Code 2}$,
$\text{Code 3}$.

2

Wie stehen die mittlere Codewortlänge $L_{\rm M}$ und die Entropie $H$ bei den gegebenen Wahrscheinlichkeiten in Relation?

$L_{\rm M} < H$,
$L_{\rm M} \ge H$,
$L_{\rm M} > H$.

3

Betrachten Sie $\text{Code 1}$. Mit welchen Symbolwahrscheinlichkeiten würde $L_{\rm M} = H$ gelten?

$\ p_{\rm A} \ = \ $

$\ p_{\rm B} \ = \ $

$\ p_{\rm C} \ = \ $

$\ p_{\rm D} \ = \ $

$\ p_{\rm E} \ = \ $

4

Die in der Teilaufgabe (3) berechneten Wahrscheinlichkeiten gelten weiter.
Die mittlere Codewortlänge wird aber nun für eine Folge der Länge $N = 40$ ermittelt  ⇒  $L_{\rm M}\hspace{0.01cm}'$. Was ist möglich?

$L_{\rm M}\hspace{0.01cm}' < L_{\rm M}$,
$L_{\rm M}\hspace{0.01cm}' = L_{\rm M}$,
$L_{\rm M}\hspace{0.01cm}' > L_{\rm M}$.

5

Welcher Code könnte überhaupt ein Huffman–Code sein?

$\text{Code 1}$,
$\text{Code 2}$,
$\text{Code 3}$.


Musterlösung

(1)  Richtig ist der Lösungsvorschlag 1. Die Grafik zeigt die Konstruktion des Huffman–Codes mittels Baumdiagramm. Mit der Zuordnung rot → 1 und blau → 0 kommt man zu folgendem Code:       A11, B10, C01, D001, E000.

Huffman–Baumdiagramme zu den Teilaufgaben (1) und (3)

Die linke Grafik gilt für die Wahrscheinlichkeiten gemäß Teilaufgabe (1). Das rechte Diagramm gehört zur Teilaufgabe (3) mit etwas anderen Wahrscheinlichkeiten. Es liefert den genau gleichen Code.

(2)  Richtig ist der Lösungsvorschlag 3, wie auch die folgende Rechnung zeigt:

$$L_{\rm M} \hspace{0.2cm} = \hspace{0.2cm} (0.3 + 0.3 + 0.3) \cdot 2 + (0.05 + 0.05) \cdot 3 = 2.1\,{\rm bit/Quellensymbol}\hspace{0.05cm},$$
$$H \hspace{0.2cm} = \hspace{0.2cm} 3 \cdot 0.3 \cdot {\rm log_2}\hspace{0.15cm}(1/0.3) + 2 \cdot 0.05 \cdot {\rm log_2}\hspace{0.15cm}(1/0.05) \approx 2.0\,{\rm bit/Quellensymbol}\hspace{0.05cm}.$$
  • Nach dem Quellencodierungstheorem gilt stets LMH.
  • Voraussetzung für LM = H ist allerdings, dass alle Symbolwahrscheinlichkeiten in der Form 2k (k = 1, 2, 3, ...) dargestellt werden können, was hier nicht zutrifft.


(3)  A, B, C werden beim Code 1 durch zwei Bit dargestellt, E, F durch drei Bit. Damit erhält man für

  • die mittlere Codewortlänge
$$L_{\rm M} = p_{\rm A}\cdot 2 + p_{\rm B}\cdot 2 + p_{\rm C}\cdot 2 + p_{\rm D}\cdot 3 + p_{\rm E}\cdot 3 \hspace{0.05cm},$$
  • für die Quellenentropie:
$$H = p_{\rm A}\cdot {\rm log_2}\hspace{0.15cm}\frac{1}{p_{\rm A}} + p_{\rm B}\cdot {\rm log_2}\hspace{0.15cm}\frac{1}{p_{\rm B}} + p_{\rm C}\cdot {\rm log_2}\hspace{0.15cm}\frac{1}{p_{\rm C}} + p_{\rm D}\cdot {\rm log_2}\hspace{0.15cm}\frac{1}{p_{\rm D}} + p_{\rm E}\cdot {\rm log_2}\hspace{0.15cm}\frac{1}{p_{\rm E}} \hspace{0.05cm}.$$

Durch Vergleich aller Terme kommt man zum Ergebnis:

$$p_{\rm A}= p_{\rm B}= p_{\rm C}\hspace{0.15cm}\underline{= 0.25} \hspace{0.05cm}, \hspace{0.2cm}p_{\rm D}= p_{\rm E}\hspace{0.15cm}\underline{= 0.125}\hspace{0.3cm} \Rightarrow\hspace{0.3cm} L_{\rm M} = H = 2.25\,{\rm bit/Quellensymbol} \hspace{0.05cm}.$$

Man erkennt: Mit diesen „günstigeren” Wahrscheinlichkeiten ergibt sich sogar eine größere mittlere Codewortlänge als mit den „ungünstigeren”. Die Gleichheit (LM = H) ist allein auf die nun größere Quellenentropie zurückzuführen.


(4)  Beispielsweise liefert eine (von vielen) Simulationen mit den Wahrscheinlichkeiten gemäß der Teilaufgabe (3) die Folge EBDCCBDABEBABCCCCCBCAABECAACCBAABBBCDCAB (mit N = 40 Zeichen). Damit ergibt sich:

$$L_{\rm M}' = ( 34 \cdot 2 + 6 \cdot 3)/50 = 2.15\,{\rm bit/Quellensymbol} \hspace{0.05cm},$$

also ein kleinerer Wert als für die unendlich lange Folge (LM = 2.25 bit/Quellensymbol). Bei anderem Startwert des Zufallsgenerators ist aber auch LMLM möglich. Alle Aussagen sind zutreffend.


(5)  Richtig ist nur der Lösungsvorschlag 1:

  • Code 1 ist ein Huffman–Code, wie schon in den vorherigen Teilaufgaben gezeigt wurde. Dies gilt zwar nicht für alle Symbolwahrscheinlichkeiten, aber zumindest für die Parametersätze gemäß den Teilaufgaben (1) und (3).
  • Code 2 ist kein Huffman–Code, da ein solcher stets präfixfrei sein müsste. Die Präfixfreiheit ist hier aber nicht gegeben, da 0 der Beginn des Codewortes 01 ist.
  • Code 3 ist ebenfalls kein Huffman–Code, da er eine um pC (Wahrscheinlichkeit von C) größere mittlere Codewortlänge aufweist als erforderlich (Code 1). Er ist somit nicht optimal: Es gibt keine Symbolwahrscheinlichkeiten pA, ... , pE, die es rechtfertigen würden, das Symbol C mit 010 anstelle von 01 zu codieren.