Aufgaben:Aufgabe 2.5: „Binomial” oder „Poisson”?: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
K (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “)
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:P_ID104__Sto_A_2_5_neu.png|right|Binomial- oder poissonverteilt?]]
+
[[Datei:P_ID104__Sto_A_2_5_neu.png|right|frame|Kenngrößen von $z_1$ und $z_2$]]
Betrachtet werden zwei diskrete Zufallsgrößen $z_1$ und $z_2$, die alle ganzzahligen Werte zwischen $0$ und $5$ (einschließlich dieser Grenzen)  annehmen können. Die Wahrscheinlichkeiten dieser Zufallsgrößen sind in nebenstehender Tabelle angegeben. Eine der beiden Zufallsgrößen ist allerdings nicht auf den angegebenen Wertebereich begrenzt.
+
Betrachtet werden zwei diskrete Zufallsgrößen $z_1$ und $z_2$, die (mindestens) alle ganzzahligen Werte zwischen $0$ und $5$ (einschließlich dieser Grenzen)  annehmen können. Die Wahrscheinlichkeiten dieser Zufallsgrößen sind in nebenstehender Tabelle angegeben. Eine der beiden Zufallsgrößen ist allerdings nicht auf den angegebenen Wertebereich begrenzt.
  
 
Weiterhin ist bekannt, dass
 
Weiterhin ist bekannt, dass
Zeile 14: Zeile 14:
  
 
Nicht bekannt ist allerdings, welche der beiden Zufallsgrößen $z_1$ und $z_2$ binomialverteilt und welche poissonverteilt  ist.
 
Nicht bekannt ist allerdings, welche der beiden Zufallsgrößen $z_1$ und $z_2$ binomialverteilt und welche poissonverteilt  ist.
 +
 +
 +
  
  
Zeile 20: Zeile 23:
 
*Bezug genommen wird aber auch auf das vorherige  Kapitel [[Stochastische_Signaltheorie/Binomialverteilung|Binomialverteilung]].
 
*Bezug genommen wird aber auch auf das vorherige  Kapitel [[Stochastische_Signaltheorie/Binomialverteilung|Binomialverteilung]].
 
   
 
   
 +
 +
  
  
Zeile 34: Zeile 39:
 
{Welche Rate $\lambda$ weist die Poissonverteilung auf?
 
{Welche Rate $\lambda$ weist die Poissonverteilung auf?
 
|type="{}"}
 
|type="{}"}
$\lambda \ =$  { 2 3% }
+
$\lambda \ = \ $  { 2 3% }
  
  
 
{Die Werte der Poissonverteilung sind nicht auf den Bereich $0$, ... ,$5$ begrenzt. Wie groß sind die Wahrscheinlichkeiten, dass die poissonverteilte Größe gleich $6$ ist bzw. größer als $6$ ist?
 
{Die Werte der Poissonverteilung sind nicht auf den Bereich $0$, ... ,$5$ begrenzt. Wie groß sind die Wahrscheinlichkeiten, dass die poissonverteilte Größe gleich $6$ ist bzw. größer als $6$ ist?
 
|type="{}"}
 
|type="{}"}
${\rm Pr}(z_{\rm Poisson} = 6) \ =$ { 0.012 3% }
+
${\rm Pr}(z_{\rm Poisson} = 6) \ = \ $ { 0.012 3% }
${\rm Pr}(z_{\rm Poisson} > 6) \ =$ { 0.004 3% }
+
${\rm Pr}(z_{\rm Poisson} > 6) \ = \ $ { 0.004 3% }
  
  
 
{Betrachten Sie nun die Binomialverteilung. Geben Sie deren charakteristische Wahrscheinlichkeit $p$ an.
 
{Betrachten Sie nun die Binomialverteilung. Geben Sie deren charakteristische Wahrscheinlichkeit $p$ an.
 
|type="{}"}
 
|type="{}"}
$p \ =$ { 0.4 3% }
+
$p \ = \ $ { 0.4 3% }
  
  
 
{Wie groß ist damit der Parameter $I$ der Binomialverteilung? Überprüfen Sie Ihr Ergebnis anhand der Wahrscheinlichkeit $\rm Pr(0)$.
 
{Wie groß ist damit der Parameter $I$ der Binomialverteilung? Überprüfen Sie Ihr Ergebnis anhand der Wahrscheinlichkeit $\rm Pr(0)$.
 
|type="{}"}
 
|type="{}"}
$I \ =$ { 5 3% }
+
$I \ = \ $ { 5 3% }
  
  

Version vom 7. August 2018, 15:14 Uhr

Kenngrößen von $z_1$ und $z_2$

Betrachtet werden zwei diskrete Zufallsgrößen $z_1$ und $z_2$, die (mindestens) alle ganzzahligen Werte zwischen $0$ und $5$ (einschließlich dieser Grenzen) annehmen können. Die Wahrscheinlichkeiten dieser Zufallsgrößen sind in nebenstehender Tabelle angegeben. Eine der beiden Zufallsgrößen ist allerdings nicht auf den angegebenen Wertebereich begrenzt.

Weiterhin ist bekannt, dass

  • eine der Größen binomialverteilt ist, und
  • die andere eine Poissonverteilung beschreibt.


Nicht bekannt ist allerdings, welche der beiden Zufallsgrößen $z_1$ und $z_2$ binomialverteilt und welche poissonverteilt ist.



Hinweise:




Fragebogen

1

Ermitteln Sie aus den Wahrscheinlichkeiten, den Mittelwerten und den Streuungen, ob $z_1$ oder $z_2$ poissonverteilt ist.

$z_1$ ist poissonverteilt und $z_2$ ist binomialverteilt.
$z_1$ ist binomialverteilt und $z_2$ ist poissonverteilt.

2

Welche Rate $\lambda$ weist die Poissonverteilung auf?

$\lambda \ = \ $

3

Die Werte der Poissonverteilung sind nicht auf den Bereich $0$, ... ,$5$ begrenzt. Wie groß sind die Wahrscheinlichkeiten, dass die poissonverteilte Größe gleich $6$ ist bzw. größer als $6$ ist?

${\rm Pr}(z_{\rm Poisson} = 6) \ = \ $

${\rm Pr}(z_{\rm Poisson} > 6) \ = \ $

4

Betrachten Sie nun die Binomialverteilung. Geben Sie deren charakteristische Wahrscheinlichkeit $p$ an.

$p \ = \ $

5

Wie groß ist damit der Parameter $I$ der Binomialverteilung? Überprüfen Sie Ihr Ergebnis anhand der Wahrscheinlichkeit $\rm Pr(0)$.

$I \ = \ $


Musterlösung

(1)  Bei der Poissonverteilung sind Mittelwert $m_1$ und Varianz $\sigma^2$ gleich. Die Zufallsgröße $z_1$ erfüllt diese Bedingung  ⇒  Lösungsvorschlag 1.

(2)  Bei der Poissonverteilung ist zudem der Mittelwert gleich der Rate. Deshalb muss $\underline{\lambda = 2}$ gelten.

(3)  Die entsprechende Wahrscheinlichkeit lautet mit $(z_{\rm Poisson} = z_1)$: $${\rm Pr}(z_1 = 6)=\frac{2^6}{6!}\cdot e^{-2}\hspace{0.15cm} \underline{\approx 0.012}$$ $${\rm Pr}(z_1 > 6)=1 -{\rm Pr}(0) -{\rm Pr}(1) - ... - {\rm Pr}(6)\hspace{0.15cm} \underline{\approx 0.004}$$

(4)  Für die Varianz der Binomialverteilung gilt: $$\sigma^{2}= I\cdot p\cdot (1- p)= m_{\rm 1}\cdot ( 1- p).$$

Die charakteristische Wahrscheinlichkeit der Binomialverteilung ergibt sich damit aus der Varianz $\sigma^2 = 1.095$ und dem Mittelwert $m_1 = 2$ entsprechend der Gleichung: $$ 1- p = \frac{\sigma^{2}}{m_1}= \frac{1.2}{2} = 0.6\hspace{0.3cm}\Rightarrow \hspace{0.3cm} p \hspace{0.15cm} \underline{= 0.4}.$$

(5)  Aus dem Mittelwert $m_1 = 2$ folgt weiterhin $\underline{I= 5}.$ Die Wahrscheinlichkeit für den Wert „0” müsste mit diesen Parametern wie folgt lauten: $${\rm Pr}(z_2 = 0)=\left({5 \atop {0}}\right)\cdot p^{\rm 0}\cdot (1 - p)^{\rm 5-0}=0.6^5=0.078.$$

Das bedeutet: Das Ergebnis ist richtig.