Aufgaben:Aufgabe 2.2Z: Diskrete Zufallsgrößen: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(6 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:P_ID84__Sto_Z_2_2.png|right|Verschiedene  Rechtecksignale]]
+
[[Datei:P_ID84__Sto_Z_2_2.png|right|frame|Verschiedene  Rechtecksignale]]
Gegeben seien drei diskrete Zufallsgrößen $a$, $b$ und $c$, die als die Momentanwerte der dargestellten Signale definiert seien. Diese besitzen folgende Eigenschaften:
+
Gegeben seien drei diskrete Zufallsgrößen  $a$,  $b$  und  $c$,  die als die Momentanwerte der dargestellten Signale definiert seien.  Diese besitzen folgende Eigenschaften:
 +
 
 +
*Die Zufallsgröße  $a$  kann die Werte  $+1$  und  $-1$  mit gleicher Wahrscheinlichkeit annehmen.
 +
*Auch die Zufallsgröße  $b$  ist zweipunktverteilt, aber  mit  ${\rm Pr}(b = 1) = p$  und  ${\rm Pr}(b = 0) = 1 - p$.
 +
*Die Wahrscheinlichkeiten von  $c$  seien  ${\rm Pr}(c = 0) = 1/2$  und  ${\rm Pr}(c = +1) = Pr(c = -1) =1/4$.
 +
*Zwischen den drei Zufallsgrößen  $a$,  $b$  und  $c$  bestehen keine statistischen Abhängigkeiten.
 +
*Aus den Zufallsgrößen  $a$,  $b$  und  $c$  wird eine weitere Zufallsvariable  $d=a-2 b+c$   gebildet.
 +
 
 +
 
 +
Die Grafik zeigt Signalsusschnitte.  Man erkennt,  dass  $d$  alle ganzzahligen Werte zwischen  $-4$  und  $+2$  annehmen kann.
 +
 
 +
 
 +
 
 +
 
  
*Die Zufallsgröße $a$ kann die Werte $+1$ und $-1$ mit gleicher Wahrscheinlichkeit annehmen.
 
*Auch die Zufallsgröße $b$ ist zweipunktverteilt, aber  mit ${\rm Pr}(b = 1) = p$ und ${\rm Pr}(b = 0) = 1 - p$.
 
*Die Wahrscheinlichkeiten von $c$ seien ${\rm Pr}(c = 0) = 1/2$ und ${\rm Pr}(c = +1) = Pr(c = -1) =1/4$.
 
*Zwischen diesen drei Zufallsgrößen $a$, $b$ und $c$ bestehen keine statistischen Abhängigkeiten.
 
*Aus den Zufallsgrößen $a$, $b$ und $c$ wird eine weitere Zufallsvariable $d=a-2 b+c$  gebildet.
 
  
  
Die Grafik zeigt Ausschnitte dieser vier Zufallsgrößen. Es ist zu erkennen, dass $d$ alle ganzzahligen Werte zwischen $-4$ und $+2$ annehmen kann.
 
  
  
 
''Hinweise:''  
 
''Hinweise:''  
*Die Aufgabe gehört zum  Kapitel [[Stochastische_Signaltheorie/Momente_einer_diskreten_Zufallsgröße|Momente einer diskreten Zufallsgröße]].
+
*Die Aufgabe gehört zum  Kapitel  [[Stochastische_Signaltheorie/Momente_einer_diskreten_Zufallsgröße|Momente einer diskreten Zufallsgröße]].
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
+
*Eine Zusammenfassung der Theamatik bietet das folgende Lernvideo:
+
*Eine Zusammenfassung der Theamatik bietet das Lernvideo  [[Momentenberechnung_bei_diskreten_Zufallsgrößen_(Lernvideo)|Momentenberechnung bei diskreten Zufallsgrößen]].
:[[Bedeutung und Berechnung der Momente bei diskreten Zufallsgrößen]]
 
  
  
Zeile 27: Zeile 33:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Wie gro&szlig; ist die Streuung der Zufallsgr&ouml;&szlig;e $a$?
+
{Wie gro&szlig; ist die Streuung &nbsp;(Standardabweichung)&nbsp; der Zufallsgr&ouml;&szlig;e&nbsp; $a$?
 
|type="{}"}
 
|type="{}"}
$\sigma_a \ =$  { 1 3% }
+
$\sigma_a \ = \ $  { 1 3% }
  
  
{Wie gro&szlig; ist die Streuung der Zufallsgr&ouml;&szlig;e $b$? Setzen Sie $p = 0.25$.
+
{Wie gro&szlig; ist die Streuung der Zufallsgr&ouml;&szlig;e&nbsp; $b$?&nbsp; Setzen Sie&nbsp; $p = 0.25$.
 
|type="{}"}
 
|type="{}"}
$p = 0.25\hspace{-0.1cm}:\hspace{0.3cm} \sigma_b \ =$ { 0.433 3% }
+
$\sigma_b \ = \ $ { 0.433 3% }
  
  
{Wie gro&szlig; ist die Streuung der Zufallsgr&ouml;&szlig;e $c$?
+
{Wie gro&szlig; ist die Streuung der Zufallsgr&ouml;&szlig;e&nbsp; $c$?
 
|type="{}"}
 
|type="{}"}
$\sigma_c \ =$ { 0.707 3% }
+
$\sigma_c \ = \ $ { 0.707 3% }
  
  
{Berechnen Sie den Mittelwert $m_d$ der Zufallsgr&ouml;&szlig;e  $d$ f&uuml;r $p = 0.25$.
+
{Berechnen Sie den Mittelwert&nbsp; $m_d$&nbsp; der Zufallsgr&ouml;&szlig;e&nbsp; $d$&nbsp; f&uuml;r $p = 0.25$.
 
|type="{}"}
 
|type="{}"}
$p = 0.25\hspace{-0.1cm}:\hspace{0.3cm} m_d\ =$ { -0.515--0.485 }
+
$m_d\ = \ $ { -0.515--0.485 }
  
  
{Wie groß ist der quadratische Mittelwert $m_{2d}$ dieser Zufallsgr&ouml;&szlig;e.
+
{Wie groß ist der quadratische Mittelwert&nbsp; $m_{2d}$&nbsp; dieser Zufallsgr&ouml;&szlig;e?
 
|type="{}"}
 
|type="{}"}
$p = 0.25\hspace{-0.1cm}:\hspace{0.3cm} m_{2d}$ = { 2.5 3% }
+
$m_{2d}\ = \ $ { 2.5 3% }
  
  
{Wie gro&szlig; ist die Streuung $\sigma_d$?
+
{Wie gro&szlig; ist die Streuung&nbsp; $\sigma_d$?
 
|type="{}"}
 
|type="{}"}
$p = 0.25\hspace{-0.1cm}:\hspace{0.3cm} \sigma_d$ = { 1.5 3% }
+
$\sigma_d\ = \ $ { 1.5 3% }
  
  
Zeile 62: Zeile 68:
 
{{ML-Kopf}}
 
{{ML-Kopf}}
 
'''(1)'''&nbsp; Aufgrund der Symmetrie gilt:
 
'''(1)'''&nbsp; Aufgrund der Symmetrie gilt:
$$\rm \it m_{\it a}=\rm 0; \hspace{0.5cm}\it m_{\rm 2\it a}=\rm 0.5\cdot (-1)^2 + 0.5\cdot (1)^2{ = 1}.$$
+
:$$\rm \it m_{\it a}=\rm 0; \hspace{0.5cm}\it m_{\rm 2\it a}=\rm 0.5\cdot (-1)^2 + 0.5\cdot (1)^2{ = 1}.$$
 +
 
 +
*Daraus erh&auml;lt man mit dem Satz von Steiner:
 +
:$$\it\sigma_a^{\rm 2} = \rm\sqrt{1-0^2}=1 \hspace{0.5cm}bzw. \hspace{0.5cm}\it\sigma_a\hspace{0.15cm} \underline{=\rm 1}.$$
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; Allgemein gilt f&uuml;r das Moment&nbsp; $k$&ndash;ter Ordnung:
 +
:$$ m_{k}=(1-p)\cdot 0^{ k} + p\cdot 1^{k}= p.$$
 +
 
 +
*Daraus folgt mit&nbsp; $p = 1/4$:
 +
:$$m_{b}= m_{2b}= p, \hspace{0.5cm} \sigma_{\it b}=\sqrt{p\cdot (1- p)}\hspace{0.15cm} \underline{=\rm 0.433} .$$
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; F&uuml;r die Zufallsgr&ouml;&szlig;e&nbsp; $c$&nbsp; gilt:
 +
:$$m_{\it c} =  0\hspace{0.3cm} ({\rm symmetrisch\hspace{0.1cm}um\hspace{0.1cm}0)},$$
 +
:$$ m_{2\it c}= {1}/{4}\cdot(-1)^2+{1}/{2}\cdot 0^2+{1}/{4}\cdot (1)^2={1}/{2} \hspace{0.5cm}$$
 +
:$$\Rightarrow \hspace{0.5cm}\sigma_{\it c}=\rm \sqrt{1/2}\hspace{0.15cm} \underline{=0.707}.$$
 +
 
 +
 
  
Daraus erh&auml;lt man mit dem Satz von Steiner:
+
'''(4)'''&nbsp; Nach den allgemeinen Regeln f&uuml;r Erwartungswerte gilt mit&nbsp; $p = 0.25$:
$$\it\sigma_a^{\rm 2} = \rm\sqrt{1-0^2}=1 \hspace{0.5cm}bzw. \hspace{0.5cm}\it\sigma_a\hspace{0.15cm} \underline{=\rm 1}.$$
+
:$$m_{\it d} = {\rm E}\big[a-2 b+c\big]= {\rm E}\big[a\big] \hspace{0.1cm} -\hspace{0.1cm}\rm 2 \hspace{0.05cm}\cdot\hspace{0.05cm} {\rm E}\big[ b\big]\hspace{0.1cm}+\hspace{0.1cm} {\rm E}\big[ c\big] =  m_{ a}\hspace{0.1cm}-\hspace{0.1cm}2\hspace{0.05cm}\cdot\hspace{0.05cm} m_{\it b}\hspace{0.1cm}+\hspace{0.1cm} m_{\it c} =    0-2\hspace{0.05cm}\cdot\hspace{0.05cm} p + 0 \hspace{0.15cm} \underline{= -0.5}.$$
  
'''(2)'''&nbsp; Allgemein gilt f&uuml;r das Moment $k$&ndash;ter Ordnung:
 
$$ m_{k}=(1-p)\cdot 0^{ k} + p\cdot 1^{k}= p.$$
 
  
Daraus folgt mit $p = 1/4$:
 
$$m_{b}= m_{2b}= p, \hspace{0.5cm} \sigma_{\it b}=\sqrt{p\cdot (1- p)}\hspace{0.15cm} \underline{=\rm 0.433} .$$
 
  
'''(3)'''&nbsp; F&uuml;r die Zufallsgr&ouml;&szlig;e $c$ gilt:
+
'''(5)'''&nbsp; Analog zur Teilaufgabe&nbsp; '''(4)'''&nbsp; erh&auml;lt man für den quadratischen Mittelwert:
$$m_{\it c} =  0\hspace{0.1cm} ({\rm symmetrisch\hspace{0.1cm}um\hspace{0.1cm}0)}, \hspace{0.5cm}m_{2\it c}= {1}/{4}\cdot(-1)^2+{1}/{2}\cdot 0^2+{1}/{4}\cdot (1)^2={1}/{2} \hspace{0.5cm}\Rightarrow \hspace{0.5cm}\sigma_{\it c}=\rm \sqrt{1/2}\hspace{0.15cm} \underline{=0.707}.$$
+
:$$m_{2d}= {\rm E}\big[( a-2b+c)^{\rm 2}\big] {\rm E}\big[a^{\rm 2}\big]\hspace{0.1cm}+\hspace{0.1cm}4\hspace{0.05cm}\cdot\hspace{0.05cm} {\rm E}\big[ b^{\rm 2}\big]\hspace{0.1cm}+\hspace{0.1cm} {\rm E}\big[c^{\rm 2}\big]\hspace{0.1cm} -  \hspace{0.1cm}4\hspace{0.05cm}\cdot\hspace{0.05cm} {\rm E}\big[a\hspace{0.05cm}\cdot \hspace{0.05cm}b\big]\hspace{0.1cm}+\hspace{0.1cm} 2\hspace{0.05cm}\cdot\hspace{0.05cm}{\rm E}\big[ a\hspace{0.05cm}\cdot \hspace{0.05cm}c\big]\hspace{0.1cm}-\hspace{0.1cm} 4\hspace{0.05cm}\cdot\hspace{0.05cm}{\rm E}\big[ b\hspace{0.05cm}\cdot \hspace{0.05cm}c\big].$$
  
'''(4)'''&nbsp; Nach den allgemeinen Regeln f&uuml;r Erwartungswerte gilt mit $p = 0.25$:
+
*Da aber&nbsp; $a$&nbsp; und&nbsp; $b$&nbsp; statistisch voneinander unabh&auml;ngig sind,&nbsp; gilt auch:
$$m_{\it d} = {\rm E}[a-2 b+c]= {\rm E}[a] \hspace{0.1cm} -\hspace{0.1cm}\rm 2 \hspace{0.05cm}\cdot\hspace{0.05cm} {\rm E}[ b]\hspace{0.1cm}+\hspace{0.1cm} {\rm E}[ c] =  m_{ a}\hspace{0.1cm}-\hspace{0.1cm}2\hspace{0.05cm}\cdot\hspace{0.05cm} m_{\it b}\hspace{0.1cm}+\hspace{0.1cm} m_{\it c} =    0-2\hspace{0.05cm}\cdot\hspace{0.05cm} p + 0 \hspace{0.15cm} \underline{= -0.5}.$$
+
:$${\rm E}\big[a\cdot b\big] = {\rm E}\big[ a\big] \cdot {\rm E}\big[ b\big]=  m_{ a}\cdot m_{ b} = 0, \hspace{0.2cm} {\rm da}\hspace{0.2cm} m_{ a}=\rm 0.$$
  
'''(5)'''&nbsp; Analog zur Teilaufgabe (4) erh&auml;lt man für den quadratischen Mittelwert:
+
*Gleiches gilt f&uuml;r die anderen gemischten Terme.&nbsp; Daher erh&auml;lt man mit&nbsp; $p = 0.25$:
$$m_{2d}= {\rm E}[( a-2b+c)^{\rm 2}] =  {\rm E}[a^{\rm 2}]\hspace{0.1cm}+\hspace{0.1cm}4\hspace{0.05cm}\cdot\hspace{0.05cm} {\rm E}[ b^{\rm 2}]\hspace{0.1cm}+\hspace{0.1cm} {\rm E}[c^{\rm 2}]\hspace{0.1cm}  -  \hspace{0.1cm}4\hspace{0.05cm}\cdot\hspace{0.05cm} {\rm E}[a\hspace{0.05cm}\cdot \hspace{0.05cm}b]\hspace{0.1cm}+\hspace{0.1cm} 2\hspace{0.05cm}\cdot\hspace{0.05cm}{\rm E}[ a\hspace{0.05cm}\cdot \hspace{0.05cm}c]\hspace{0.1cm}-\hspace{0.1cm} 4\hspace{0.05cm}\cdot\hspace{0.05cm}{\rm E}[ b\hspace{0.05cm}\cdot \hspace{0.05cm}c].$$
+
:$$ m_{2 d}=m_{2 a}+4\cdot m_{ 2 b}+m_{ 2 c}=1+4\cdot p+0.5\hspace{0.15cm} \underline{=\rm 2.5}.$$
  
Da aber $a$ und $b$ statistisch voneinander unabh&auml;ngig sind, gilt auch:
 
$${\rm E}[a\cdot b] = {\rm E}[ a] \cdot {\rm E}[ b]=  m_{ a}\cdot  m_{ b} = 0, \hspace{0.1cm} {\rm da}\hspace{0.1cm}  m_{ a}=\rm 0.$$
 
  
Gleiches gilt f&uuml;r die anderen gemischten Terme. Daher erh&auml;lt man mit $p = 0.25$:
 
$$ m_{2 d}=m_{2 a}+4\cdot m_{ 2 b}+m_{ 2 c}=1+4\cdot  p+0.5\hspace{0.15cm} \underline{=\rm 2.5}.$$
 
  
'''(6)'''&nbsp; Für allgemeines $p$ bzw. f&uuml;r $p = 0.25$ ergibt sich:
+
'''(6)'''&nbsp; Für allgemeines&nbsp; $p$ &nbsp;bzw.&nbsp; f&uuml;r&nbsp; $p = 0.25$&nbsp; ergibt sich:
$$\sigma_{\it d}^{\rm 2}=1.5+4\cdot p - 4 \cdot p^{\rm 2}=2.25 \hspace{0.5cm}\Rightarrow \hspace{0.5cm}  \sigma_{d}\hspace{0.15cm} \underline{=\rm 1.5}.$$
+
:$$\sigma_{\it d}^{\rm 2}=1.5+4\cdot p - 4 \cdot p^{\rm 2}=2.25 \hspace{0.5cm}\Rightarrow \hspace{0.5cm}  \sigma_{d}\hspace{0.15cm} \underline{=\rm 1.5}.$$
  
Die maximale Varianz erg&auml;be sich f&uuml;r $p = 0.50$ zu $\sigma_{\it d}^{\rm 2}=2.50$.
+
*Die maximale Varianz erg&auml;be sich f&uuml;r&nbsp; $p = 0.50$&nbsp; &nbsp;zu&nbsp; $\sigma_{\it d}^{\rm 2}=2.50$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Aktuelle Version vom 7. Dezember 2021, 15:07 Uhr

Verschiedene Rechtecksignale

Gegeben seien drei diskrete Zufallsgrößen  $a$,  $b$  und  $c$,  die als die Momentanwerte der dargestellten Signale definiert seien.  Diese besitzen folgende Eigenschaften:

  • Die Zufallsgröße  $a$  kann die Werte  $+1$  und  $-1$  mit gleicher Wahrscheinlichkeit annehmen.
  • Auch die Zufallsgröße  $b$  ist zweipunktverteilt, aber mit  ${\rm Pr}(b = 1) = p$  und  ${\rm Pr}(b = 0) = 1 - p$.
  • Die Wahrscheinlichkeiten von  $c$  seien  ${\rm Pr}(c = 0) = 1/2$  und  ${\rm Pr}(c = +1) = Pr(c = -1) =1/4$.
  • Zwischen den drei Zufallsgrößen  $a$,  $b$  und  $c$  bestehen keine statistischen Abhängigkeiten.
  • Aus den Zufallsgrößen  $a$,  $b$  und  $c$  wird eine weitere Zufallsvariable  $d=a-2 b+c$  gebildet.


Die Grafik zeigt Signalsusschnitte.  Man erkennt,  dass  $d$  alle ganzzahligen Werte zwischen  $-4$  und  $+2$  annehmen kann.





Hinweise:


Fragebogen

1

Wie groß ist die Streuung  (Standardabweichung)  der Zufallsgröße  $a$?

$\sigma_a \ = \ $

2

Wie groß ist die Streuung der Zufallsgröße  $b$?  Setzen Sie  $p = 0.25$.

$\sigma_b \ = \ $

3

Wie groß ist die Streuung der Zufallsgröße  $c$?

$\sigma_c \ = \ $

4

Berechnen Sie den Mittelwert  $m_d$  der Zufallsgröße  $d$  für $p = 0.25$.

$m_d\ = \ $

5

Wie groß ist der quadratische Mittelwert  $m_{2d}$  dieser Zufallsgröße?

$m_{2d}\ = \ $

6

Wie groß ist die Streuung  $\sigma_d$?

$\sigma_d\ = \ $


Musterlösung

(1)  Aufgrund der Symmetrie gilt:

$$\rm \it m_{\it a}=\rm 0; \hspace{0.5cm}\it m_{\rm 2\it a}=\rm 0.5\cdot (-1)^2 + 0.5\cdot (1)^2{ = 1}.$$
  • Daraus erhält man mit dem Satz von Steiner:
$$\it\sigma_a^{\rm 2} = \rm\sqrt{1-0^2}=1 \hspace{0.5cm}bzw. \hspace{0.5cm}\it\sigma_a\hspace{0.15cm} \underline{=\rm 1}.$$


(2)  Allgemein gilt für das Moment  $k$–ter Ordnung:

$$ m_{k}=(1-p)\cdot 0^{ k} + p\cdot 1^{k}= p.$$
  • Daraus folgt mit  $p = 1/4$:
$$m_{b}= m_{2b}= p, \hspace{0.5cm} \sigma_{\it b}=\sqrt{p\cdot (1- p)}\hspace{0.15cm} \underline{=\rm 0.433} .$$


(3)  Für die Zufallsgröße  $c$  gilt:

$$m_{\it c} = 0\hspace{0.3cm} ({\rm symmetrisch\hspace{0.1cm}um\hspace{0.1cm}0)},$$
$$ m_{2\it c}= {1}/{4}\cdot(-1)^2+{1}/{2}\cdot 0^2+{1}/{4}\cdot (1)^2={1}/{2} \hspace{0.5cm}$$
$$\Rightarrow \hspace{0.5cm}\sigma_{\it c}=\rm \sqrt{1/2}\hspace{0.15cm} \underline{=0.707}.$$


(4)  Nach den allgemeinen Regeln für Erwartungswerte gilt mit  $p = 0.25$:

$$m_{\it d} = {\rm E}\big[a-2 b+c\big]= {\rm E}\big[a\big] \hspace{0.1cm} -\hspace{0.1cm}\rm 2 \hspace{0.05cm}\cdot\hspace{0.05cm} {\rm E}\big[ b\big]\hspace{0.1cm}+\hspace{0.1cm} {\rm E}\big[ c\big] = m_{ a}\hspace{0.1cm}-\hspace{0.1cm}2\hspace{0.05cm}\cdot\hspace{0.05cm} m_{\it b}\hspace{0.1cm}+\hspace{0.1cm} m_{\it c} = 0-2\hspace{0.05cm}\cdot\hspace{0.05cm} p + 0 \hspace{0.15cm} \underline{= -0.5}.$$


(5)  Analog zur Teilaufgabe  (4)  erhält man für den quadratischen Mittelwert:

$$m_{2d}= {\rm E}\big[( a-2b+c)^{\rm 2}\big] = {\rm E}\big[a^{\rm 2}\big]\hspace{0.1cm}+\hspace{0.1cm}4\hspace{0.05cm}\cdot\hspace{0.05cm} {\rm E}\big[ b^{\rm 2}\big]\hspace{0.1cm}+\hspace{0.1cm} {\rm E}\big[c^{\rm 2}\big]\hspace{0.1cm} - \hspace{0.1cm}4\hspace{0.05cm}\cdot\hspace{0.05cm} {\rm E}\big[a\hspace{0.05cm}\cdot \hspace{0.05cm}b\big]\hspace{0.1cm}+\hspace{0.1cm} 2\hspace{0.05cm}\cdot\hspace{0.05cm}{\rm E}\big[ a\hspace{0.05cm}\cdot \hspace{0.05cm}c\big]\hspace{0.1cm}-\hspace{0.1cm} 4\hspace{0.05cm}\cdot\hspace{0.05cm}{\rm E}\big[ b\hspace{0.05cm}\cdot \hspace{0.05cm}c\big].$$
  • Da aber  $a$  und  $b$  statistisch voneinander unabhängig sind,  gilt auch:
$${\rm E}\big[a\cdot b\big] = {\rm E}\big[ a\big] \cdot {\rm E}\big[ b\big]= m_{ a}\cdot m_{ b} = 0, \hspace{0.2cm} {\rm da}\hspace{0.2cm} m_{ a}=\rm 0.$$
  • Gleiches gilt für die anderen gemischten Terme.  Daher erhält man mit  $p = 0.25$:
$$ m_{2 d}=m_{2 a}+4\cdot m_{ 2 b}+m_{ 2 c}=1+4\cdot p+0.5\hspace{0.15cm} \underline{=\rm 2.5}.$$


(6)  Für allgemeines  $p$  bzw.  für  $p = 0.25$  ergibt sich:

$$\sigma_{\it d}^{\rm 2}=1.5+4\cdot p - 4 \cdot p^{\rm 2}=2.25 \hspace{0.5cm}\Rightarrow \hspace{0.5cm} \sigma_{d}\hspace{0.15cm} \underline{=\rm 1.5}.$$
  • Die maximale Varianz ergäbe sich für  $p = 0.50$   zu  $\sigma_{\it d}^{\rm 2}=2.50$.