Aufgabe 2.11Z: Erasure–Kanal für Symbole

Aus LNTwww
Version vom 21. Oktober 2022, 15:41 Uhr von Guenter (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu:Navigation, Suche

Auslöschungskanal für Symbole:   $m$–BEC

Das Kanalmodell  "Binary Erasure Channel"  $\rm (BEC)$  beschreibt einen Auslöschungskanal auf Bitebene:

  • Ein Binärsymbol  $(0$  bzw.  $1)$  wird mit der Wahrscheinlichkeit  $1 - \lambda$  richtig übertragen und mit der Wahrscheinlichkeit  $\lambda$  als Auslöschung  $\rm E$  ("Erasure")  markiert.
  • Im Gegensatz zum  "Binary Symmetric Channel"  $\rm (BSC)$  kann es hier nicht zu Verfälschungen   $(0 → 1, \ 1 → 0)$   kommen.


Ein Reed–Solomon–Code basiert auf einem Galoisfeld  ${\rm GF}(2^m)$  mit ganzzahligem  $m$.  Somit lässt sich jedes Codesymbol   $c$   durch  $m$ Bit  darstellen.  Will man hier das BEC–Modell anwenden,  so muss man dieses zum  "$m$-BEC-Modell"  modifizieren,  wie es in der unteren Grafik für  $m = 2$  gezeigt ist:

  • Alle Codesymbole  $($in Binärdarstellung  $00, \ 01, \ 10, \ 11)$   werden mit Wahrscheinlichkeit  $1 - \lambda_2$  richtig übertragen.
  • Damit beträgt die Wahrscheinlichkeit für ein ausgelöschtes Symbol  $\lambda_2$.
  • Zu beachten ist,  dass bereits ein einziges ausgelöschtes Bit zum ausgelöschten Empfangssymbol  $y = \rm E$  führt.



Hinweise:

  • Bei einem auf   ${\rm GF}(2^m)$   basierenden Code ist das skizzierte  "$2$–BEC–Modell" zum  "$m$–BEC"  zu erweitern.
  • Die Auslöschungswahrscheinlichkeit dieses Modell wird dann mit  $\lambda_m$  bezeichnet.
  • Für die ersten Teilaufgaben gelte für die Auslöschungswahrscheinlichkeit gemäß der oberen Grafik stets  $\lambda = 0.2$.



Fragebogen

1

Es gelte  $\lambda = 0.2$.  Mit welchen Wahrscheinlichkeiten treten beim  BEC–Grundmodell  die möglichen Empfangswerte auf?

${\rm Pr}(y = 0) \ = \ $

$\ \%$
${\rm Pr}(y = {\rm E}) \ = \ $

$\ \%$
${\rm Pr}(y = {\rm 1}) \ = \ $

$\ \%$

2

Wie groß ist die Auslöschungswahrscheinlichkeit  $\lambda_2$  auf Symbolebene  $(2$–BEC–Modell$)$, wenn der RS–Code auf  $\rm GF(2^2)$  basiert  $(\lambda = 0.2)$?

$\lambda_2 \ = \ $

$\ \%$

3

Wie groß ist die Auslöschungswahrscheinlichkeit  $\lambda_m$,  wenn das  $m$–BEC–Modell  an den  $\rm RSC \, (255, \, 223, \, 33)_{256}$  angepasst wird  $(\lambda = 0.2)$?

$\lambda_m \ = \ $

$\ \%$

4

Wie groß darf die Auslöschungswahrscheinlichkeit  $\lambda$   beim  BEC–Grundmodell  maximal sein, damit  $\lambda_m ≤ 0.2$  gilt?

${\rm Max} \ \big[\lambda\big ] \ = \ $

$\ \%$

5

Mit welcher Wahrscheinlichkeit wird in diesem Fall das  „Nullsymbol”  empfangen?

${\rm Pr}(y_{\rm bin} = 00000000) \ = \ $

$\ \%$


Musterlösung

(1)  Aufgrund der Symmetrie des vorgegebenen BEC–Modells  (Auslöschungskanal auf Bitebene)  gilt für die  "Erasure"–Wahrscheinlichkeit:

$$\ {\rm Pr}(y = {\rm E}) = \lambda \ \underline{= 20\%}.$$
  • Da die Codesymbole  $0$  und  $1$  gleichwahrscheinlich sind,  erhält man für deren Wahrscheinlichkeiten   ${\rm Pr}(y = 0) \ \underline{= 40\%}$   und   ${\rm Pr}(y = 1) \ \underline{= 40\%}$.


(2)  Ohne Einschränkung der Allgemeingültigkeit gehen wir zur Lösung dieser Aufgabe vom  Codesymbol  $c_{\rm bin} = $ „$00$” aus.

  • Entsprechend dem  $2$–BEC–Modell kann dann das Empfangssymbol  $y_{\rm bin}$  entweder  „$00$”  oder ausgelöscht  $(\rm E)$  sein und es gilt:
$${\rm Pr}(y_{\rm bin} = "00"\hspace{0.05cm} |\hspace{0.05cm} c_{\rm bin} = "00") \hspace{-0.15cm} \ = \ \hspace{-0.15cm} ( 1 - \lambda)^2 = 0.8^2 = 0.64 = 1 - \lambda_2\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \lambda_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 - ( 1 - \lambda)^2 \hspace{0.15cm}\underline{= 36\%}\hspace{0.05cm}. $$
  • Hierbei ist vorausgesetzt,  dass ein  "Erasure"  nur vermieden wird,  wenn keines der zwei Bit ausgelöscht wurde.


(3)  Der   $\rm RSC \, (255, \, 223, \, 33)_{256}$   basiert auf dem Galoisfeld   $\rm GF(256) = GF(2^8) \ \Rightarrow \ \it m = \rm 8$.

  • Das Ergebnis der Teilaufgabe  (2)  muss nun an diesen Fall angepasst werden.  Für den  $8$–BEC gilt:
$$1 - \lambda_8 = ( 1 - \lambda)^8 = 0.8^8 \approx 0.168 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \lambda_m = \lambda_8 \hspace{0.15cm}\underline{\approx 83.2\%}\hspace{0.05cm}. $$


(4)  Aus der Bedingung   $\lambda_m ≤ 0.2$   folgt direkt:  $1 - \lambda_m ≥ 0.8$.  Daraus folgt weiter:

$$( 1 - \lambda)^8 \ge 0.8 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 1 - \lambda \ge 0.8^{0.125} \approx 0.9725 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\lambda \hspace{0.15cm} \underline{\le 2.75\%}\hspace{0.05cm}.$$


(5)  Hier geht man wie folgt vor:

  • Mit  $\lambda = 0.0275 \ \Rightarrow \ \lambda_m = 0.2$  sind  $20\%$  der Empfangssymbole Auslöschungen.
  • Die  $2^8 = 256$  Empfangssymbole  $(00000000$   ...   $11111111)$  sind alle gleichwahrscheinlich.  Daraus folgt:
$${\rm Pr}(y_{\rm bin} = 00000000) = \hspace{0.1cm}\text{...} \hspace{0.1cm}= {\rm Pr}(y_{\rm bin} = 11111111)= \frac{0.8}{256} \hspace{0.15cm}\underline{= 0.3125\%}\hspace{0.05cm}.$$