Aufgaben:Aufgabe 2.11Z: Erasure–Kanal für Symbole: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
K (Textersetzung - „* Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “)
Zeile 2: Zeile 2:
  
 
[[Datei:P_ID2543__KC_Z_2_11.png|right|frame|Auslöschungskanal für Symbole:   $m$–BEC]]
 
[[Datei:P_ID2543__KC_Z_2_11.png|right|frame|Auslöschungskanal für Symbole:   $m$–BEC]]
Das Kanalmodell [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#Binary_Symmetric_Channel_.E2.80.93_BSC|Binary Erasure Channel]] (BEC) beschreibt einen Auslöschungskanal auf Bitebene:  
+
Das Kanalmodell  [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#Binary_Symmetric_Channel_.E2.80.93_BSC|Binary Erasure Channel]]  (BEC) beschreibt einen Auslöschungskanal auf Bitebene:  
*Ein Binärsymbol $0$ bzw. $1$ wird mit der Wahrscheinlichkeit $1 - \lambda$ richtig übertragen und mit der Wahrscheinlichkeit $\lambda$ als Auslöschung $\rm E$ (<i>Erasure</i>) markiert.  
+
*Ein Binärsymbol&nbsp; $0$&nbsp; bzw.&nbsp; $1$&nbsp; wird mit der Wahrscheinlichkeit&nbsp; $1 - \lambda$&nbsp; richtig übertragen und mit der Wahrscheinlichkeit&nbsp; $\lambda$&nbsp; als Auslöschung&nbsp; $\rm E$&nbsp; (<i>Erasure</i>&nbsp;) markiert.  
*Im Gegensatz zum [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#Binary_Symmetric_Channel_.E2.80.93_BSC| Binary Symmetric Channel]] (BSC) kann es hier nicht zu Verfälschungen $(0 &#8594 1, \ 1 &#8594; 0)$ kommen.
+
*Im Gegensatz zum&nbsp; [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#Binary_Symmetric_Channel_.E2.80.93_BSC| Binary Symmetric Channel]]&nbsp; (BSC) kann es hier nicht zu Verfälschungen&nbsp; $(0 &#8594 1, \ 1 &#8594; 0)$&nbsp; kommen.
 +
 
 +
 
 +
Ein Reed&ndash;Solomon&ndash;Code basiert auf einem Galoisfeld&nbsp; ${\rm GF}(2^m)$&nbsp; mit ganzzahligem&nbsp; $m$. Somit lässt sich jedes Codesymbol&nbsp; $c$&nbsp; durch&nbsp; $m$ Bit&nbsp; darstellen. Will man hier das BEC&ndash;Modell anwenden, so muss man dieses zum&nbsp; $m\text{-BEC}$-Modell&nbsp; modifizieren, wie es in der unteren Grafik für&nbsp; $m = 2$&nbsp; gezeigt ist:
 +
 
 +
*Alle Codesymbole &ndash; in Binärdarstellung&nbsp; $00, \ 01, \ 10, \ 11$&nbsp; &ndash; werden mit Wahrscheinlichkeit&nbsp; $1 - \lambda_2$&nbsp; richtig übertragen.
 +
*Damit beträgt die Wahrscheinlichkeit für ein ausgelöschtes Symbol&nbsp; $\lambda_2$.
 +
*Zu beachten ist, dass bereits ein einziges ausgelöschtes Bit zum ausgelöschten Empfangssymbol&nbsp; $y = \rm E$&nbsp; führt.
  
  
Ein Reed&ndash;Solomon&ndash;Code basiert auf einem Galoisfeld ${\rm GF}(2^m)$ mit ganzzahligem $m$. Somit lässt sich jedes Codesymbol $c$ durch $m$ Bit darstellen. Will man hier das BEC&ndash;Modell anwenden, so muss man dieses zum <b><i>m</i>&ndash;BEC&ndash;Modell</b> modifizieren, wie es in der unteren Grafik für $m = 2$ gezeigt ist:
 
  
*Alle Codesymbole &ndash; in binärer Darstellung $00, \ 01, \ 10$ und $11$ &ndash; werden mit der Wahrscheinlichkeit $1 - \lambda_2$ richtig übertragen.
 
*Damit beträgt die Wahrscheinlichkeit für ein ausgelöschtes Symbol $\lambda_2$.
 
*Zu beachten ist, dass bereits ein einziges ausgelöschtes Bit zum ausgelöschten Empfangssymbol $y = \rm E$ führt.
 
  
  
Zeile 17: Zeile 20:
  
 
''Hinweise:''
 
''Hinweise:''
* Die Aufgabe gehört zum Kapitel [[Kanalcodierung/Reed%E2%80%93Solomon%E2%80%93Decodierung_beim_Ausl%C3%B6schungskanal| Reed&ndash;Solomon&ndash;Decodierung beim Auslöschungskanal]].
+
* Die Aufgabe gehört zum Kapitel&nbsp; [[Kanalcodierung/Reed%E2%80%93Solomon%E2%80%93Decodierung_beim_Ausl%C3%B6schungskanal| Reed&ndash;Solomon&ndash;Decodierung beim Auslöschungskanal]].
* Bei einem auf ${\rm GF}(2^m)$ basierenden Code ist das skizzierte 2&ndash;BEC&ndash;Modell zum $m$&ndash;BEC zu erweitern. Die Auslöschungswahrscheinlichkeit dieses Modell wird dann mit $\lambda_m$ bezeichnet.
+
* Bei einem auf&nbsp; ${\rm GF}(2^m)$&nbsp; basierenden Code ist das skizzierte&nbsp; $2$&ndash;BEC&ndash;Modell zum&nbsp; $m$&ndash;BEC zu erweitern.  
* Für die ersten Teilaufgaben gelte für die Auslöschungswahrscheinlichkeit des Grundmodells gemäß der oberen Grafik stets $\lambda = 0.2$.
+
*Die Auslöschungswahrscheinlichkeit dieses Modell wird dann mit&nbsp; $\lambda_m$&nbsp; bezeichnet.
 +
* Für die ersten Teilaufgaben gelte für die Auslöschungswahrscheinlichkeit des Grundmodells gemäß der oberen Grafik stets&nbsp; $\lambda = 0.2$.
 
   
 
   
  
Zeile 26: Zeile 30:
 
===Fragebogen===
 
===Fragebogen===
 
<quiz display=simple>
 
<quiz display=simple>
{Es gelte $\lambda = 0.2$. Mit welchen Wahrscheinlichkeiten treten beim BEC&ndash;Grundmodell die möglichen Empfangswerte auf?
+
{Es gelte&nbsp; $\lambda = 0.2$. Mit welchen Wahrscheinlichkeiten treten beim&nbsp; BEC&ndash;Grundmodell&nbsp; die möglichen Empfangswerte auf?
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(y = 0) \ = \ ${ 40 3% } $\ \%$
 
${\rm Pr}(y = 0) \ = \ ${ 40 3% } $\ \%$
Zeile 32: Zeile 36:
 
${\rm Pr}(y = {\rm 1}) \ = \ ${ 40 3% } $\ \%$
 
${\rm Pr}(y = {\rm 1}) \ = \ ${ 40 3% } $\ \%$
  
{Wie groß ist die Auslöschungswahrscheinlichkeit $\lambda_2$ auf Symbolebene (2&ndash;BEC&ndash;Modell), wenn der RS&ndash;Code auf $\rm GF(2^2)$ basiert $(\lambda = 0.2)$?
+
{Wie groß ist die Auslöschungswahrscheinlichkeit&nbsp; $\lambda_2$&nbsp; auf Symbolebene&nbsp; $(2$&ndash;BEC&ndash;Modell$)$, wenn der RS&ndash;Code auf&nbsp; $\rm GF(2^2)$&nbsp; basiert&nbsp; $(\lambda = 0.2)$?
 
|type="{}"}
 
|type="{}"}
 
$\lambda_2 \ = \ ${ 36 3% } $\ \%$
 
$\lambda_2 \ = \ ${ 36 3% } $\ \%$
  
{Wie groß ist die Auslöschungswahrscheinlichkeit $\lambda_m$, wenn das $m$&ndash;BEC&ndash;Modell an den $\rm RSC \, (255, \, 223, \, 33)_{256}$ angepasst wird $(\lambda = 0.2)$?
+
{Wie groß ist die Auslöschungswahrscheinlichkeit&nbsp; $\lambda_m$, wenn das&nbsp; $m$&ndash;BEC&ndash;Modell&nbsp; an den&nbsp; $\rm RSC \, (255, \, 223, \, 33)_{256}$&nbsp; angepasst wird&nbsp; $(\lambda = 0.2)$?
 
|type="{}"}
 
|type="{}"}
 
$\lambda_m \ = \ ${ 83.2 3% } $\ \%$
 
$\lambda_m \ = \ ${ 83.2 3% } $\ \%$
  
{Wie groß darf die Auslöschungswahrscheinlichkeit $\lambda$ beim BEC&ndash;Grundmodell maximal sein, damit $\lambda_m &#8804; 0.2$ gilt?
+
{Wie groß darf die Auslöschungswahrscheinlichkeit&nbsp; $\lambda$&nbsp; beim&nbsp; BEC&ndash;Grundmodell&nbsp; maximal sein, damit&nbsp; $\lambda_m &#8804; 0.2$&nbsp; gilt?
 
|type="{}"}
 
|type="{}"}
${\rm Max} \ [\lambda] \ = \ ${ 2.75 3% } $\ \%$
+
${\rm Max} \ \big[\lambda\big ] \ = \ ${ 2.75 3% } $\ \%$
  
 
{Mit welcher Wahrscheinlichkeit wird in diesem Fall das &bdquo;Nullsymbol&rdquo; empfangen?
 
{Mit welcher Wahrscheinlichkeit wird in diesem Fall das &bdquo;Nullsymbol&rdquo; empfangen?

Version vom 24. Mai 2019, 11:37 Uhr

Auslöschungskanal für Symbole:   $m$–BEC

Das Kanalmodell  Binary Erasure Channel  (BEC) beschreibt einen Auslöschungskanal auf Bitebene:

  • Ein Binärsymbol  $0$  bzw.  $1$  wird mit der Wahrscheinlichkeit  $1 - \lambda$  richtig übertragen und mit der Wahrscheinlichkeit  $\lambda$  als Auslöschung  $\rm E$  (Erasure ) markiert.
  • Im Gegensatz zum  Binary Symmetric Channel  (BSC) kann es hier nicht zu Verfälschungen  $(0 → 1, \ 1 → 0)$  kommen.


Ein Reed–Solomon–Code basiert auf einem Galoisfeld  ${\rm GF}(2^m)$  mit ganzzahligem  $m$. Somit lässt sich jedes Codesymbol  $c$  durch  $m$ Bit  darstellen. Will man hier das BEC–Modell anwenden, so muss man dieses zum  $m\text{-BEC}$-Modell  modifizieren, wie es in der unteren Grafik für  $m = 2$  gezeigt ist:

  • Alle Codesymbole – in Binärdarstellung  $00, \ 01, \ 10, \ 11$  – werden mit Wahrscheinlichkeit  $1 - \lambda_2$  richtig übertragen.
  • Damit beträgt die Wahrscheinlichkeit für ein ausgelöschtes Symbol  $\lambda_2$.
  • Zu beachten ist, dass bereits ein einziges ausgelöschtes Bit zum ausgelöschten Empfangssymbol  $y = \rm E$  führt.




Hinweise:

  • Die Aufgabe gehört zum Kapitel  Reed–Solomon–Decodierung beim Auslöschungskanal.
  • Bei einem auf  ${\rm GF}(2^m)$  basierenden Code ist das skizzierte  $2$–BEC–Modell zum  $m$–BEC zu erweitern.
  • Die Auslöschungswahrscheinlichkeit dieses Modell wird dann mit  $\lambda_m$  bezeichnet.
  • Für die ersten Teilaufgaben gelte für die Auslöschungswahrscheinlichkeit des Grundmodells gemäß der oberen Grafik stets  $\lambda = 0.2$.



Fragebogen

1

Es gelte  $\lambda = 0.2$. Mit welchen Wahrscheinlichkeiten treten beim  BEC–Grundmodell  die möglichen Empfangswerte auf?

${\rm Pr}(y = 0) \ = \ $

$\ \%$
${\rm Pr}(y = {\rm E}) \ = \ $

$\ \%$
${\rm Pr}(y = {\rm 1}) \ = \ $

$\ \%$

2

Wie groß ist die Auslöschungswahrscheinlichkeit  $\lambda_2$  auf Symbolebene  $(2$–BEC–Modell$)$, wenn der RS–Code auf  $\rm GF(2^2)$  basiert  $(\lambda = 0.2)$?

$\lambda_2 \ = \ $

$\ \%$

3

Wie groß ist die Auslöschungswahrscheinlichkeit  $\lambda_m$, wenn das  $m$–BEC–Modell  an den  $\rm RSC \, (255, \, 223, \, 33)_{256}$  angepasst wird  $(\lambda = 0.2)$?

$\lambda_m \ = \ $

$\ \%$

4

Wie groß darf die Auslöschungswahrscheinlichkeit  $\lambda$  beim  BEC–Grundmodell  maximal sein, damit  $\lambda_m ≤ 0.2$  gilt?

${\rm Max} \ \big[\lambda\big ] \ = \ $

$\ \%$

5

Mit welcher Wahrscheinlichkeit wird in diesem Fall das „Nullsymbol” empfangen?

${\rm Pr}(y_{\rm bin} = 00000000) \ = \ $

$\ \%$


Musterlösung

(1)  Aufgrund der Symmetrie des vorgegebenen BEC–Modells (Auslöschungskanal auf Bitebene) gilt für die Erasure–Wahrscheinlichkeit:

$$\ {\rm Pr}(y = {\rm E}) = \lambda \ \underline{= 20\%}.$$

Da die Codesymbole $0$ und $1$ gleichwahrscheinlich sind, erhält man für deren Wahrscheinlichkeiten ${\rm Pr}(y = 0) \ \underline{= 40\%}$ und ${\rm Pr}(y = 1) \ \underline{= 40\%}$.


(2)  Ohne Einschränkung der Allgemeingültigkeit gehen wir zur Lösung dieser Aufgabe vom Codesymbol $c_{\rm binär} = $ „$00$” aus.

  • Entsprechend dem 2–BEC–Modell kann dann das Empfangssymbol $y_{\rm binär}$ entweder „$00$” oder ausgelöscht $(\rm E)$ sein und es gilt:
$${\rm Pr}(y_{\rm bin} = "00"\hspace{0.05cm} |\hspace{0.05cm} c_{\rm bin} = "00") \hspace{-0.15cm} \ = \ \hspace{-0.15cm} ( 1 - \lambda)^2 = 0.8^2 = 0.64 = 1 - \lambda_2\hspace{0.3cm} \Rightarrow \hspace{0.3cm} \lambda_2 \hspace{-0.15cm} \ = \ \hspace{-0.15cm} 1 - ( 1 - \lambda)^2 \hspace{0.15cm}\underline{= 36\%}\hspace{0.05cm}. $$
  • Hierbei ist vorausgesetzt, dass ein Erasure nur vermieden wird, wenn keines der zwei Bit ausgelöscht wurde.


(3)  Der $\rm RSC \, (255, \, 223, \, 33)_{256}$ basiert auf dem Galoisfeld $\rm GF(256) = GF(2^8) \ \Rightarrow \ \it m = \rm 8$. Das Ergebnis der Teilaufgabe (2) muss nun an diesen Fall angepasst werden. Für den $8$–BEC gilt:

$$1 - \lambda_8 = ( 1 - \lambda)^8 = 0.8^8 \approx 0.168 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \lambda_m = \lambda_8 \hspace{0.15cm}\underline{\approx 83.2\%}\hspace{0.05cm}. $$


(4)  Aus der Bedingung $\lambda_m ≤ 0.2$ folgt direkt $1 - \lambda_m ≥ 0.8$. Daraus folgt weiter:

$$( 1 - \lambda)^8 \ge 0.8 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 1 - \lambda \ge 0.8^{0.125} \approx 0.9725 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}\lambda \hspace{0.15cm} \underline{\le 2.75\%}\hspace{0.05cm}.$$


(5)  Hier geht man wie folgt vor:

  • Mit $\lambda = 0.0275 \ \Rightarrow \ \lambda_m = 0.2$ sind $20\%$ der Empfangssymbole Erasures.
  • Die $2^8 = 256$ Empfangssymbole ($00000000$   ...   $11111111$) sind alle gleichwahrscheinlich. Daraus folgt:
$${\rm Pr}(y_{\rm bin} = 00000000) = \hspace{0.1cm}\text{...} \hspace{0.1cm}= {\rm Pr}(y_{\rm bin} = 11111111)= \frac{0.8}{256} \hspace{0.15cm}\underline{= 0.3125\%}\hspace{0.05cm}.$$