Aufgaben:Aufgabe 2.10Z: Coderate und minimale Distanz: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
K (Textersetzung - „* Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „“)
Zeile 2: Zeile 2:
  
 
[[Datei:P_ID2526__KC_Z_2_10.png|right|frame|Die beiden Erfinder der Reed–Solomon–Codes]]
 
[[Datei:P_ID2526__KC_Z_2_10.png|right|frame|Die beiden Erfinder der Reed–Solomon–Codes]]
Die von [https://de.wikipedia.org/wiki/Irving_Stoy_Reed Irving Story Reed] und [https://de.wikipedia.org/wiki/Gustave_Solomon Gustav Solomon] Anfang der 1960er Jahre entwickelten Codes werden in diesem Tutorial wie folgt mit
+
Die von  [https://de.wikipedia.org/wiki/Irving_Stoy_Reed Irving Stoy Reed]  und  [https://de.wikipedia.org/wiki/Gustave_Solomon Gustave Solomon]  Anfang der 1960er Jahre entwickelten Codes werden in diesem Tutorial wie folgt bezeichnet:
${\rm RSC} \, (n, \, k, \, d_{\rm min}) _q.$ bezeichnet.
+
:$${\rm RSC} \, (n, \, k, \, d_{\rm min}) _q.$
  
 
Die Codeparameter haben folgende Bedeutungen:
 
Die Codeparameter haben folgende Bedeutungen:
* $q = 2^m$ ist ein Hinweis auf die Größe des Galoisfeldes   ⇒   ${\rm GF}(q)$,
+
* $q = 2^m$  ist ein Hinweis auf die Größe des Galoisfeldes   ⇒   ${\rm GF}(q)$,
* $n = q - 1$ ist die Codelänge (Symbolanzahl eines Codewortes),  
+
* $n = q - 1$  ist die Codelänge (Symbolanzahl eines Codewortes),  
* $k$ gibt die Dimension an (Symbolanzahl eines Informationsblocks),
+
* $k$  gibt die Dimension an (Symbolanzahl eines Informationsblocks),
* $d_{\rm min}$ bezeichnet die minimale Distanz zwischen zwei Codeworten. Für die Reed–Solomon–Codes gilt $d_{\rm min} = n - k + 1$.
+
* $d_{\rm min}$  bezeichnet die minimale Distanz zwischen zwei Codeworten. Für jeden Reed–Solomon–Codes gilt  $d_{\rm min} = n - k + 1$.
*Mit keinem anderen Code mit gleichem $k$ und  $n$ ergibt sich ein größerer Wert.
+
*Mit keinem anderen Code mit gleichem  $k$  und  $n$  ergibt sich ein größerer Wert.
 +
 
 +
 
 +
 
 +
 
  
  
Zeile 17: Zeile 21:
  
 
''Hinweise:''
 
''Hinweise:''
* Die Aufgabe gehört zum Kapitel [[Kanalcodierung/Definition_und_Eigenschaften_von_Reed%E2%80%93Solomon%E2%80%93Codes| Definition und Eigenschaften von Reed–Solomon–Codes]].
+
* Die Aufgabe gehört zum Kapitel  [[Kanalcodierung/Definition_und_Eigenschaften_von_Reed%E2%80%93Solomon%E2%80%93Codes| Definition und Eigenschaften von Reed–Solomon–Codes]].
* Die für diese Aufgabe relevanten Informationen finden Sie am Ende des Theorieteils, nämlich auf der Seite [[Kanalcodierung/Definition_und_Eigenschaften_von_Reed%E2%80%93Solomon%E2%80%93Codes#Codebezeichnung_und_Coderate|Codebezeichnung und Coderate]].
+
* Die für diese Aufgabe relevanten Informationen finden Sie auf der Seite  [[Kanalcodierung/Definition_und_Eigenschaften_von_Reed%E2%80%93Solomon%E2%80%93Codes#Codebezeichnung_und_Coderate|Codebezeichnung und Coderate]].
  
  
Zeile 26: Zeile 30:
 
===Fragebogen===
 
===Fragebogen===
 
<quiz display=simple>
 
<quiz display=simple>
{Geben Sie die Kenngrößen des ${\rm RSC} \, (255, \, 223, \, d_{\rm min})_q$ an.
+
{Geben Sie die Kenngrößen des&nbsp; ${\rm RSC} \, (255, \, 223, \, d_{\rm min})_q$&nbsp; an.
 
|type="{}"}
 
|type="{}"}
 
$q \hspace{0.2cm} = \ ${ 256 }
 
$q \hspace{0.2cm} = \ ${ 256 }
Zeile 34: Zeile 38:
 
$d_{\rm min} \ = \ ${ 33 }
 
$d_{\rm min} \ = \ ${ 33 }
  
{Geben Sie die Kenngrößen des $\rm RSC \, (2040, \, 1784, \, d_{\rm min})_2$ an.
+
{Geben Sie die Kenngrößen des&nbsp; $\rm RSC \, (2040, \, 1784, \, d_{\rm min})_2$&nbsp; an.
 
|type="{}"}
 
|type="{}"}
 
$R \hspace{0.2cm} = \ ${ 0.8745 3% }
 
$R \hspace{0.2cm} = \ ${ 0.8745 3% }
 
$d_{\rm min} \ = \ ${ 33 }
 
$d_{\rm min} \ = \ ${ 33 }
  
{Wieviele Bitfehler $(N_3)$ darf ein Empfangswort $\underline{y}$ maximal aufweisen, damit es <u>mit Sicherheit richtig decodiert wird</u>?
+
{Wieviele Bitfehler&nbsp; $(N_3)$&nbsp; darf ein Empfangswort&nbsp; $\underline{y}$&nbsp; maximal aufweisen, damit es <u>mit Sicherheit richtig decodiert wird</u>?
 
|type="{}"}
 
|type="{}"}
 
$N_{3} \ = \ $ { 16 }
 
$N_{3} \ = \ $ { 16 }
  
{Wieviele Bitfehler $(N_4)$ darf ein Empfangswort $\underline{y}$ im günstigsten Fall aufweisen, damit es noch <u>richtig decodiert werden könnte</u>?
+
{Wieviele Bitfehler&nbsp; $(N_4)$&nbsp; darf ein Empfangswort&nbsp; $\underline{y}$&nbsp; im günstigsten Fall aufweisen, damit es noch <u>richtig decodiert werden könnte</u>?
 
|type="{}"}
 
|type="{}"}
 
$N_{4} \ = \ $ { 128 }
 
$N_{4} \ = \ $ { 128 }

Version vom 22. Mai 2019, 17:39 Uhr

Die beiden Erfinder der Reed–Solomon–Codes

Die von  Irving Stoy Reed  und  Gustave Solomon  Anfang der 1960er Jahre entwickelten Codes werden in diesem Tutorial wie folgt bezeichnet:

$${\rm RSC} \, (n, \, k, \, d_{\rm min}) _q.$$

Die Codeparameter haben folgende Bedeutungen:

  • $q = 2^m$  ist ein Hinweis auf die Größe des Galoisfeldes   ⇒   ${\rm GF}(q)$,
  • $n = q - 1$  ist die Codelänge (Symbolanzahl eines Codewortes),
  • $k$  gibt die Dimension an (Symbolanzahl eines Informationsblocks),
  • $d_{\rm min}$  bezeichnet die minimale Distanz zwischen zwei Codeworten. Für jeden Reed–Solomon–Codes gilt  $d_{\rm min} = n - k + 1$.
  • Mit keinem anderen Code mit gleichem  $k$  und  $n$  ergibt sich ein größerer Wert.





Hinweise:



Fragebogen

1

Geben Sie die Kenngrößen des  ${\rm RSC} \, (255, \, 223, \, d_{\rm min})_q$  an.

$q \hspace{0.2cm} = \ $

$e \hspace{0.2cm} = \ $

$t \hspace{0.2cm} = \ $

$R \hspace{0.2cm} = \ $

$d_{\rm min} \ = \ $

2

Geben Sie die Kenngrößen des  $\rm RSC \, (2040, \, 1784, \, d_{\rm min})_2$  an.

$R \hspace{0.2cm} = \ $

$d_{\rm min} \ = \ $

3

Wieviele Bitfehler  $(N_3)$  darf ein Empfangswort  $\underline{y}$  maximal aufweisen, damit es mit Sicherheit richtig decodiert wird?

$N_{3} \ = \ $

4

Wieviele Bitfehler  $(N_4)$  darf ein Empfangswort  $\underline{y}$  im günstigsten Fall aufweisen, damit es noch richtig decodiert werden könnte?

$N_{4} \ = \ $


Musterlösung

(1)  Aus der Codelänge $n = 255$ folgt $q \ \underline{= 256}$.

Die Coderate ergibt sich zu $R = {223}/{255} \hspace{0.15cm}\underline {=0.8745}\hspace{0.05cm}.$

Die minimale Distanz beträgt $d_{\rm min} = n - k +1 = 255 - 223 +1 \hspace{0.15cm}\underline {=33}\hspace{0.05cm}.$

Damit können

  • $e = d_{\rm min} - 1 \ \underline{= 32}$ Symbolfehler erkannt werden, und
  • $t = e/2$ (abgerundet), also $\underline{t = 16}$ Symbolfehler korrigiert werden.


(2)  Der Code $\rm RSC \, (2040, \, 1784, \, d_{\rm min})_2$ ist die Binärrepräsentation des unter (1) behandelten ${\rm RSC} \, (255, \, 223, \, 33)_{256}$ mit genau der gleichen Coderate $R \ \underline{= 0.8745}$ und ebenfalls gleicher Minimaldistanz $d_{\rm min} \ \underline{= 33}$ wie dieser. Hier werden pro Codesymbol $8$ Bit (1 Byte) verwendet.


(3)  Aus $d_{\rm min} = 33$ folgt wieder $t = 16 \ \Rightarrow \ N_{3} \ \underline{= 16}$.

  • Ist in jedem Codesymbol genau ein Bit verfälscht, so bedeutet dies gleichzeitig auch 16 Symbolfehler.
  • Dies ist der maximale Wert, den der Reed–Solomon–Decoder noch verkraften kann.


(4)  Der RS–Decoder kann 16 verfälschte Codesymbole korrigieren, wobei es egal ist, ob in einem Codesymbol nur ein Bit oder alle $m = 8$ Bit verfälscht wurden. Deshalb können bei der günstigsten Fehlerverteilung bis zu $N_4 = 8 \cdot 16 \ \underline{= 128}$ Bit verfälscht sein, ohne dass das Codewort falsch decodiert wird.