Aufgaben:Aufgabe 2.07Z: Reed–Solomon–Code (15, 5, 11) zur Basis 16: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 18: Zeile 18:
 
  c_{14} = u(\alpha^{14})\hspace{0.05cm}.$$
 
  c_{14} = u(\alpha^{14})\hspace{0.05cm}.$$
  
''Hinweis:''
+
''Hinweise:''
 
* Die Aufgabe bezieht sich auf das Kapitel [[Kanalcodierung/Definition_und_Eigenschaften_von_Reed%E2%80%93Solomon%E2%80%93Codes| Definition und Eigenschaften von Reed–Solomon–Codes]].
 
* Die Aufgabe bezieht sich auf das Kapitel [[Kanalcodierung/Definition_und_Eigenschaften_von_Reed%E2%80%93Solomon%E2%80%93Codes| Definition und Eigenschaften von Reed–Solomon–Codes]].
 +
* Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
  
  

Version vom 16. Dezember 2017, 11:00 Uhr

$\rm GF(2^4)$ in Exponenten–, Polynom- und Koeffizientendarstellung

Die vorliegende Aufgabenstellung ist ähnlich wie diejenige bei der Aufgabe A2.7. Wir beziehen uns hier aber nun auf das Galoisfeld $\rm GF(2^4)$, dessen Elemente nebenstehend sowohl in Exponenten– und Polynomdarstellung als auch durch den Koeffizientenvektor angegeben sind. Weiter gilt in $\rm GF(2^4)$:

$$\alpha^{16} = \alpha^{1}\hspace{0.05cm},\hspace{0.2cm} \alpha^{17} = \alpha^{2}\hspace{0.05cm},\hspace{0.2cm} \alpha^{18} = \alpha^{3}\hspace{0.05cm},\hspace{0.05cm}...$$

Zur Codierung des Informationsblockes der Länge $k = 5$,

$$\underline{u} = (u_0,u_1,u_2,u_3,u_4)\hspace{0.05cm},$$

bilden wir das Polynom

$$u(x) = u_0 + u_1 \cdot x + u_2 \cdot x^2 + u_3 \cdot x^3 + u_4 \cdot x^4 $$

mit $u_0, \ ... \ , \ u_4 ∈ \rm GF(2^4)$. Die $n = 15$ Codeworte ergeben sich dann, wenn man in $u(x)$ die Elemente von $\rm GF(2^4) \ \backslash \ \{0\}$ einsetzt:

$$c_0 = u(\alpha^{0})\hspace{0.05cm},\hspace{0.2cm} c_1 = u(\alpha^{1})\hspace{0.05cm}, \hspace{0.2cm} c_2 = u(\alpha^{2})\hspace{0.05cm}, \hspace{0.15cm} ... \hspace{0.15cm},\hspace{0.20cm} c_{14} = u(\alpha^{14})\hspace{0.05cm}.$$

Hinweise:



Fragebogen

1

Multiple-Choice

correct
false

2

Input-Box Frage

$xyz \ = \ $

$ab$


Musterlösung

(1)  (2)  (3)  (4)  (5)