Aufgaben:Aufgabe 1.8Z: Cosinus-Quadrat-Tiefpass: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
K (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “)
Zeile 4: Zeile 4:
  
 
[[Datei:P_ID868__LZI_Z_1_8.png|right|frame|Zum Cosinus–Quadrat–Tiefpass]]
 
[[Datei:P_ID868__LZI_Z_1_8.png|right|frame|Zum Cosinus–Quadrat–Tiefpass]]
Bei der Untersuchung von Digitalsystemen geht man häufig von einem diracförmigen Eingangssignal $x(t) = T \cdot \delta(t)$ aus, so dass $X(f) = T$ gilt. Das Ausgangsspektrum $Y(f)$ ist dann formgleich mit dem Gesamtfrequenzgang von Sende– und Empfangsfilter:
+
Bei der Untersuchung von Digitalsystemen geht man häufig von einem diracförmigen Eingangssignal  $x(t) = T \cdot \delta(t)$  aus, so dass  $X(f) = T$  gilt.  
 +
 
 +
Das Ausgangsspektrum  $Y(f)$  ist dann formgleich mit dem Gesamtfrequenzgang von Sende– und Empfangsfilter:
 
:$$H(f)  = H_{\rm S}(f) \cdot H_{\rm E}(f).$$
 
:$$H(f)  = H_{\rm S}(f) \cdot H_{\rm E}(f).$$
  
Dieser wird häufig als $\cos^2$-förmig angenommen (siehe Grafik):
+
Dieser Frequenzgang wird häufig als $\cos^2$-förmig angenommen (siehe Grafik):
* Für $f \cdot T \ge 1$  ist $H(f) = 0$.  
+
* Für  $f \cdot T \ge 1$  ist  $H(f) = 0$.  
*Im inneren Bereich gilt $H(f)  = \cos^2(f \cdot T \cdot {\pi}/{ 2}  ) .$
+
*Im inneren Bereich gilt  $H(f)  = \cos^2(f \cdot T \cdot {\pi}/{ 2}  ) .$
  
  
Anzumerken ist, dass die äquivalente Bandbreite $\Delta f = 1/{\Delta t}$ ist. Damit erhält man für die äquivalente ${\Delta t}$ der Impulsantwort ebenfalls $T$ und und es gilt:
+
Anzumerken ist, dass die äquivalente Bandbreite  $\Delta f = 1/{\Delta t}$  ist. Damit erhält man für die äquivalente  ${\Delta t}$  der Impulsantwort ebenfalls  $T$  und und es gilt:
 
:$$y(t) = T \cdot h(t) = {\rm si}(\pi \cdot {t}/{T} )\cdot \frac
 
:$$y(t) = T \cdot h(t) = {\rm si}(\pi \cdot {t}/{T} )\cdot \frac
 
{\cos(\pi \cdot  t / T  )}{1 - (2 \cdot  t/T )^2}.$$
 
{\cos(\pi \cdot  t / T  )}{1 - (2 \cdot  t/T )^2}.$$
  
Zu beachten ist, dass das Ausgangssignal $y(t)$ im Gegensatz zur Impulsantwort $h(t)$ ohne Einheit ist. Durch Anwendung trigonomischer Umformungen kann dieses Signal auch wie folgt dargestellt werden:
+
Zu beachten ist, dass das Ausgangssignal  $y(t)$  im Gegensatz zur Impulsantwort  $h(t)$  ohne Einheit ist. Durch Anwendung trigonomischer Umformungen kann dieses Signal auch wie folgt dargestellt werden:
 
:$$y(t) = {\pi}/{4} \cdot {\rm si}(\pi \cdot {t}/{T} )\cdot
 
:$$y(t) = {\pi}/{4} \cdot {\rm si}(\pi \cdot {t}/{T} )\cdot
\left[ {\rm si}\left(\pi \cdot \left({t}/{T}+ 0.5 \right)
+
\big[ {\rm si}\left(\pi \cdot \left({t}/{T}+ 0.5 \right)
 
\right)+ {\rm si}\left(\pi \cdot \left({t}/{T}- 0.5 \right)
 
\right)+ {\rm si}\left(\pi \cdot \left({t}/{T}- 0.5 \right)
\right)\right].$$
+
\right)\big].$$
  
 
Wählen Sie bei den folgenden Aufgaben die jeweils einfacher handhabbare Gleichung aus.
 
Wählen Sie bei den folgenden Aufgaben die jeweils einfacher handhabbare Gleichung aus.
  
Für die Teilaufgabe (3) soll vorausgesetzt werden, dass das Signal  $s(t)$  in der Mitte zwischen den beiden Frequenzgängen $H_{\rm S}(f)$ und  $H_{\rm S}(f)$ ein Rechteckimpuls ist. Demzufolge muss gelten:
+
Für die Teilaufgabe '''(3)''' soll vorausgesetzt werden, dass das Signal   $s(t)$  in der Mitte zwischen den beiden Frequenzgängen  $H_{\rm S}(f)$  und   $H_{\rm S}(f)$  ein Rechteckimpuls ist. Demzufolge muss gelten:
 
:$$H_{\rm E}(f)  = {\rm  si }(\pi f T  ) .$$
 
:$$H_{\rm E}(f)  = {\rm  si }(\pi f T  ) .$$
  
Zeile 32: Zeile 34:
  
 
''Hinweise:''  
 
''Hinweise:''  
*Die Aufgabe gehört zum  Kapitel [[Lineare_zeitinvariante_Systeme/Einige_systemtheoretische_Tiefpassfunktionen|Einige systemtheoretische Tiefpassfunktionen]].   
+
*Die Aufgabe gehört zum  Kapitel  [[Lineare_zeitinvariante_Systeme/Einige_systemtheoretische_Tiefpassfunktionen|Einige systemtheoretische Tiefpassfunktionen]].   
*Bezug genommen wird insbesondere auf die Seite  [[Lineare_zeitinvariante_Systeme/Einige_systemtheoretische_Tiefpassfunktionen#Cosinus-Rolloff-Tiefpass|Cosinus–Rolloff–Tiefpass]].  
+
*Bezug genommen wird insbesondere auf die Seite  [[Lineare_zeitinvariante_Systeme/Einige_systemtheoretische_Tiefpassfunktionen#Cosinus-Rolloff-Tiefpass|Cosinus–Rolloff–Tiefpass]].  
*Sie können Ihre Ergebnisse mit dem interaktiven Applet [[Applets:Frequenzgang_und_Impulsantwort|Frequenzgang und Impulsantwort]] überprüfen.
+
*Sie können Ihre Ergebnisse mit dem interaktiven Applet  [[Applets:Frequenzgang_und_Impulsantwort|Frequenzgang und Impulsantwort]]  überprüfen.
 
   
 
   
  

Version vom 6. November 2018, 12:59 Uhr

Zum Cosinus–Quadrat–Tiefpass

Bei der Untersuchung von Digitalsystemen geht man häufig von einem diracförmigen Eingangssignal  $x(t) = T \cdot \delta(t)$  aus, so dass  $X(f) = T$  gilt.

Das Ausgangsspektrum  $Y(f)$  ist dann formgleich mit dem Gesamtfrequenzgang von Sende– und Empfangsfilter:

$$H(f) = H_{\rm S}(f) \cdot H_{\rm E}(f).$$

Dieser Frequenzgang wird häufig als $\cos^2$-förmig angenommen (siehe Grafik):

  • Für  $f \cdot T \ge 1$  ist  $H(f) = 0$.
  • Im inneren Bereich gilt  $H(f) = \cos^2(f \cdot T \cdot {\pi}/{ 2} ) .$


Anzumerken ist, dass die äquivalente Bandbreite  $\Delta f = 1/{\Delta t}$  ist. Damit erhält man für die äquivalente  ${\Delta t}$  der Impulsantwort ebenfalls  $T$  und und es gilt:

$$y(t) = T \cdot h(t) = {\rm si}(\pi \cdot {t}/{T} )\cdot \frac {\cos(\pi \cdot t / T )}{1 - (2 \cdot t/T )^2}.$$

Zu beachten ist, dass das Ausgangssignal  $y(t)$  im Gegensatz zur Impulsantwort  $h(t)$  ohne Einheit ist. Durch Anwendung trigonomischer Umformungen kann dieses Signal auch wie folgt dargestellt werden:

$$y(t) = {\pi}/{4} \cdot {\rm si}(\pi \cdot {t}/{T} )\cdot \big[ {\rm si}\left(\pi \cdot \left({t}/{T}+ 0.5 \right) \right)+ {\rm si}\left(\pi \cdot \left({t}/{T}- 0.5 \right) \right)\big].$$

Wählen Sie bei den folgenden Aufgaben die jeweils einfacher handhabbare Gleichung aus.

Für die Teilaufgabe (3) soll vorausgesetzt werden, dass das Signal  $s(t)$  in der Mitte zwischen den beiden Frequenzgängen  $H_{\rm S}(f)$  und  $H_{\rm S}(f)$  ein Rechteckimpuls ist. Demzufolge muss gelten:

$$H_{\rm E}(f) = {\rm si }(\pi f T ) .$$



Hinweise:



Fragebogen

1

Berechnen Sie das Ausgangssignal zu den Zeitpunkten $t = 0$ und $t = T$.

$y(t = 0) \ = \ $

$y(t = T) \ = \ $

2

Berechnen Sie das Ausgangssignal zu den Zeitpunkten $t = T/2$ und $t = 1.5 T$.

$y(t = 0.5 T) \ = \ $

$y(t = 1.5 T) \ = \ $

3

Berechnen Sie $y(t)$ für große $t$-Werte. Geeignete Näherungen sind erlaubt und erwünscht. Wie groß ist der Signalwert bei $t = 10.75 T$?

$y(t = 10.75 T) \ = \ $

$ \ \cdot \ 10^{-6}$

4

Geben Sie den erforderlichen Empfängerfrequenzgang $H_{\rm E}(f)$ für $H_{\rm S}(f)= {\rm si}(πfT)$ an. Welche Werte ergeben sich für die angegebenen Frequenzen?

$H_{\rm E}(f=0) \ = \ $

$H_{\rm E}(f=0.5/T) \ = \ $

$H_{\rm E}(f=1/T) \ = \ $


Musterlösung

(1)  Aus der ersten Gleichung auf der Angabenseite folgt aufgrund der $\rm si$–Funktion direkt $y(t = 0) = 1$ und $y(t = T) = y(t = 2T) = \text{...} =0$. Auch aus der zweiten Gleichung erhält man diese Ergebnisse, beispielsweise

$$y(t = 0) = {\pi}/{4} \cdot {\rm si}(0)\cdot \left[ {\rm si}(\pi/2)+ {\rm si}(-\pi/2)\right] {\pi}/{2} \cdot {\rm si}(\pi/2) = {\pi}/{2} \cdot \frac{{\rm sin}(\pi/2)}{\pi/2} \hspace{0.15cm}\underline{= 1},$$
$$y(t = T) \hspace{0.15cm}=\hspace{0.15cm}{\pi}/{4} \cdot {\rm si}(\pi)\cdot \left[ {\rm si}(3\pi/2)+ {\rm si}(\pi/2)\right] \hspace{0.15cm}\underline{= 0}.$$


(2)  Zur Berechnung dieser Signalwerte ist die zweite Darstellung besser geeignet:

Ausgangssignal des Cosinus–Quadrat–Tiefpasses
$$y(t = T/2) = {\pi}/{4} \cdot {\rm si}(\pi/2)\cdot \left[ {\rm si}(\pi)+ {\rm si}(0)\right].$$

Mit ${\rm si}(0) = 1$ und ${\rm si}(\pi) = 0$ erhält man so:

$$y(t = T/2) = {\pi}/{4} \cdot {\rm si}(\pi/2)= {\pi}/{4} \cdot \frac{{\rm sin}(\pi/2)}{\pi/2} \hspace{0.15cm}\underline{ = 0.5}.$$

In analoger Weise ergibt sich für $t = 1.5T$:

$$y(t = 1.5T) = {\pi}/{4} \cdot {\rm si}(3\pi/2)\cdot \left[ {\rm si}(2\pi)+ {\rm si}(\pi)\right] \hspace{0.15cm}\underline{ = 0}.$$

Hierbei ist ${\rm si}(\pi) = {\rm si}(2\pi) = 0$ berücksichtigt. Auch zuu den Zeiten $t/T = 2.5, 3.5,\text{ ... }$ gilt $y(t) = 0$, wie nebenstehende Grafik zeigt.


(3)  Für große Werte von $t$ gilt näherungsweise (wenn man die „1” im Nenner vernachlässigt):

$$y(t)= {\rm si}(\pi \cdot {t}/{T} )\cdot \frac {\cos(\pi \cdot t / T )}{1 - (2 \cdot t/T )^2} \approx \frac {\sin(\pi \cdot t / T )\cdot \cos(\pi \cdot t / T )}{ - (\pi \cdot t/T )(2 \cdot t/T )^2} = - \frac {\sin(2\pi \cdot t / T )}{ 8 \pi \cdot( t/T )^3}.$$

Hierbei ist berücksichtigt, dass $\sin(\alpha) \cdot \cos(\alpha) = \sin(2\alpha)/2$ ist. Zum Zeitpunkt $t = 10.75 T$ gilt dann:

$$\sin(2\pi \cdot t / T ) = \sin (21.5\pi)= \sin (1.5\pi) = -1\hspace{0.3cm} \Rightarrow \hspace{0.3cm} y(t = 10.75 T) = \frac {1 }{ 8 \pi \cdot( 10.75 )^3} \hspace{0.15cm}\underline{= 32 \cdot 10^{-6}}.$$


Gesuchter Empfängerfrequenzgang

(4)  Der Empfängerfrequenzgang lautet für$|f \cdot T| \le 1$ :

$$H_{\rm E}(f) = \frac{H(f)}{H_{\rm S}(f)}= \frac{\cos^2(\pi f T /2)}{{\rm si}(\pi fT)}.$$

Dieser Funktionsverlauf ist in der Grafik dargestellt. Für die gesuchten Stützwerte gilt:

$$H_{\rm E}(f = 0) = \frac{\cos^2(0)}{{\rm si}(0)} \hspace{0.15cm}\underline{ = 1},$$
$$H_{\rm E}(f = {0.5}/T \hspace{-0.15cm} = \hspace{-0.15cm} \frac{\cos^2(\pi/4)}{{\rm si}(\pi/2)}= (\sqrt{2} / 2)^2 \cdot \frac{\pi}{2} = \hspace{-0.15cm} \frac{\pi}{4}\hspace{0.15cm}\underline{ \approx 0.785},$$
$$H_{\rm E}(f = {1}/{T}) = \frac{\cos^2(\pi/2)}{{\rm si}(\pi)} = "0/0"\hspace{0.15cm}\underline{= 0}.$$

Bei diesem Ergebnis ist berücksichtigt, dass im gesamten Frequenzbereich $H_{\rm S}(f) \ge H(f) $ gilt. Eigentlich müsste der zuletzt berechnete Wert durch einen Grenzübergang mathematisch-exakt bestimmt werden.