Aufgaben:Aufgabe 1.7Z: BARBARA-Generator: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 41: Zeile 41:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:<b>1.</b>&nbsp;&nbsp;Die Summe aller abgehenden Pfeile muss immer 1 sein. Deshalb gilt <i>q</i> = 1 - <i>p</i>. Aufgrund der Symmetrie des Markovdiagramms sind die ergodischen Wahrscheinlichkeiten alle gleich:
+
'''(1)'''&nbsp; Richtig sind <u>der zweite und der dritte Lösungsvorschlag</u>:
 +
*Die Summe aller abgehenden Pfeile muss immer $1$ sein. Deshalb gilt $q = 1 - p$.  
 +
*Aufgrund der Symmetrie des Markovdiagramms sind die ergodischen Wahrscheinlichkeiten alle gleich:
 
:$${\rm Pr}(A) ={\rm Pr}(B) ={\rm Pr}(R) = 1/3.$$
 
:$${\rm Pr}(A) ={\rm Pr}(B) ={\rm Pr}(R) = 1/3.$$
:Richtig sind somit <u>der zweite und der dritte Lösungsvorschlag</u>.
 
:<b>2.</b>&nbsp;&nbsp;Wenn man zum Zeitpunkt <i>&nu;</i> im Zustand <i>B</i> ist, ist für den Zeitpunkt <i>&nu;</i> + 1 wegen Pr(<i>B</i>|<i>B</i>) = 0 der Zustand <i>B</i> nicht möglich. Man scheitert hier bereits beim Anfangsbuchstaben &bdquo;<i>B</i>&rdquo;: <i>p</i><sub>B</sub> <u>= 0</u>
 
  
:F&uuml;r die Berechnung von <i>p</i><sub>A</sub> ist zu beachten: Ausgehend von <i>A</i> geht man im Markovdiagramm zun&auml;chst zu <i>B</i> (mit der Wahrscheinlichkeit <i>q</i>), dann f&uuml;nfmal im Uhrzeigersinn (jeweils mit der Wahrscheinlichkeit <i>p</i>) und schlie&szlig;lich noch von <i>R</i> nach <i>A</i> (mit der Wahrscheinlichkeit <i>q</i>). Das bedeutet:0</u>.
+
 
:$$p_{\rm A} = q^2 \hspace{0.05cm}\cdot  \hspace{0.05cm} p^5 = 3^2 / 4^7 \hspace{0.15cm}\underline {\approx 5.49 \hspace{0.05cm}\cdot  \hspace{0.05cm} 10^{-4}}.$$
+
'''(2)'''&nbsp; Wenn man zum Zeitpunkt $\nu$ im Zustand $B$ ist, ist für den Zeitpunkt $\nu+1$ wegen ${\rm Pr}(B\hspace{0.05cm}|\hspace{0.05cm}B) = 0$ der Zustand $B$ nicht möglich. Man scheitert hier bereits beim Anfangsbuchstaben $B$:
:In &auml;hnlicher Weise erh&auml;lt man:
+
:$$p_{\rm B} \; \underline{ =0}.$$
:$$p_{\rm R} = q \hspace{0.05cm}\cdot  \hspace{0.05cm} p^6 = 3 / 4^7 \hspace{0.15cm}\underline {\approx 1.83 \hspace{0.05cm}\cdot  \hspace{0.05cm} 10^{-4}}.$$
+
 
:<b>3.</b>&nbsp;&nbsp;Durch Mittelung &uuml;ber die bedingten Wahrscheinlichkeiten erh&auml;lt man:
+
F&uuml;r die Berechnung von $p_{\rm A}$ ist zu beachten: Ausgehend von $A$ geht man im Markovdiagramm zun&auml;chst zu $B$ (mit der Wahrscheinlichkeit $q$), dann f&uuml;nfmal im Uhrzeigersinn (jeweils mit der Wahrscheinlichkeit $p$) und schlie&szlig;lich noch von $R$ nach $A$ (mit der Wahrscheinlichkeit $q$). Das bedeutet:
 +
:$$p_{\rm A} = q^2 \hspace{0.05cm}\cdot  \hspace{0.05cm} p^5 = 3^2 / 4^7 \hspace{0.15cm}\underline {\approx 0.549 \hspace{0.05cm}\cdot  \hspace{0.05cm} 10^{-3}}.$$
 +
In &auml;hnlicher Weise erh&auml;lt man:
 +
:$$p_{\rm R} = q \hspace{0.05cm}\cdot  \hspace{0.05cm} p^6 = 3 / 4^7 \hspace{0.15cm}\underline {\approx 0.183 \hspace{0.05cm}\cdot  \hspace{0.05cm} 10^{-3}}.$$
 +
 
 +
 
 +
'''(3)'''&nbsp; Durch Mittelung &uuml;ber die bedingten Wahrscheinlichkeiten erh&auml;lt man:
 
:$${\rm Pr}(BARBARA) = p_{\rm A}  \hspace{0.05cm}\cdot  \hspace{0.05cm} {\rm Pr}(A) \hspace{0.1cm} + \hspace{0.1cm}p_{\rm B}  \hspace{0.05cm}\cdot  \hspace{0.05cm} {\rm Pr}(B) \hspace{0.1cm} + \hspace{0.1cm}p_{\rm R}  \hspace{0.05cm}\cdot  \hspace{0.05cm} {\rm Pr}(R).$$
 
:$${\rm Pr}(BARBARA) = p_{\rm A}  \hspace{0.05cm}\cdot  \hspace{0.05cm} {\rm Pr}(A) \hspace{0.1cm} + \hspace{0.1cm}p_{\rm B}  \hspace{0.05cm}\cdot  \hspace{0.05cm} {\rm Pr}(B) \hspace{0.1cm} + \hspace{0.1cm}p_{\rm R}  \hspace{0.05cm}\cdot  \hspace{0.05cm} {\rm Pr}(R).$$
:Dies f&uuml;hrt zu dem Ergebnis:
+
Dies f&uuml;hrt zum Ergebnis:
:$${\rm Pr}(BARBARA) \hspace{-0.15cm} = \hspace{-0.15cm} \frac {1}{3} \cdot \left( q^2 \hspace{0.05cm}\cdot  \hspace{0.05cm} p^5  \hspace{0.1cm} +\hspace{0.1cm}0  \hspace{0.1cm} +\hspace{0.1cm}q \hspace{0.05cm}\cdot  \hspace{0.05cm} p^6  \right)  
+
:$${\rm Pr}(BARBARA) = {1}/{3} \cdot \left( q^2 \hspace{0.05cm}\cdot  \hspace{0.05cm} p^5  \hspace{0.1cm} +\hspace{0.1cm}0  \hspace{0.1cm} +\hspace{0.1cm}q \hspace{0.05cm}\cdot  \hspace{0.05cm} p^6  \right)  
  = \frac{q \hspace{0.05cm}\cdot  \hspace{0.05cm} p^5 }{3} \cdot (p+q) = \\
+
  = \frac{q \hspace{0.05cm}\cdot  \hspace{0.05cm} p^5 }{3} \cdot (p+q)  
 
= \hspace{-0.15cm} \frac{q \hspace{0.05cm}\cdot  \hspace{0.05cm} p^5 }{3}
 
= \hspace{-0.15cm} \frac{q \hspace{0.05cm}\cdot  \hspace{0.05cm} p^5 }{3}
  \hspace{0.15cm}\underline { \approx 2.44 \hspace{0.05cm}\cdot  \hspace{0.05cm} 10^{-4}}.$$
+
  \hspace{0.15cm}\underline { \approx 0.244 \hspace{0.05cm}\cdot  \hspace{0.05cm} 10^{-3}}.$$
:<b>4.</b>&nbsp;&nbsp;Die im Punkt c) berechnete Wahrscheinlichkeit lautet <i>p</i><sup>5</sup> &middot; (1 - <i>p</i>)/3, wobei <i>q</i> = 1 &ndash; <i>p</i> berücksichtigt ist. Durch Nullsetzen des Differentials erh&auml;lt man die Bestimmungsgleichung:
+
 
:$$5 \cdot p^4 - 6 \cdot p^5 = 0 \hspace{0.5cm} \Rightarrow  \hspace{0.5cm}  p = 5/6 \hspace{0.15cm}\underline { \approx \rm 0.833}.$$
+
 
:Damit ergibt sich ein gegen&uuml;ber c) etwa um den Faktor 90 gr&ouml;&szlig;erer Wert: &nbsp;Pr(<i>BARBARA</i>) <u>&asymp; 0.022</u>.
+
'''(4)'''&nbsp; Die im Punkt (3) berechnete Wahrscheinlichkeit lautet $p^5 \cdot (1-p)/3$, wobei $q= 1-p$ berücksichtigt ist. Durch Nullsetzen des Differentials erh&auml;lt man die Bestimmungsgleichung:
 +
:$$5 \cdot p^4 - 6 \cdot p^5 = 0 \hspace{0.5cm} \Rightarrow  \hspace{0.5cm}  p_{\rm opt} = 5/6 \hspace{0.15cm}\underline { \approx \rm 0.833}.$$
 +
Damit ergibt sich ein gegen&uuml;berder Teilaufgabe (3) etwa um den Faktor 90 gr&ouml;&szlig;erer Wert:  
 +
:$${\rm Pr}(BARBARA)   \hspace{0.15cm}\underline { \approx 22  \hspace{0.05cm}\cdot  \hspace{0.05cm} 10^{-3}}.$$
 +
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Version vom 23. Februar 2017, 17:59 Uhr

BARBARA-Generator

Betrachtet wird hier ein ternärer Zufallsgenerator mit den Symbolen $A$, $B$ und $R$, der durch eine homogene und stationäre Markovkette erster Ordnung beschrieben werden kann.

Die Übergangswahrscheinlichkeiten können dem skizzierten Markovdiagramm entnommen werden. Für die ersten drei Teilaufgaben soll stets $p = 1/4$ gelten.

Hinweise:

  • Die Aufgabe gehört zum Kapitel Markovketten.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.


Fragebogen

1

Welche der nachfolgenden Aussagen sind zutreffend?

Die Werte von $p > 0$ und $q < 1$ sind weitgehend frei wählbar.
Für die Übergangswahrscheinlichkeiten muss gelten:   $p + q = 1$.
Alle Symbole haben gleiche ergodische Wahrscheinlichkeiten.
Es gilt hier: ${\rm Pr}(A) = 1/2, \; {\rm Pr}(B) = 1/3, \; {\rm Pr}(R) = 1/6$.

2

Wie groß sind die bedingten Wahrscheinlichkeiten $p_{\rm A}$, $p_{\rm B}$ und $p_{\rm C}$, dass im Zeitbereich zwischen $ν+1$ und $ν+7$ $\rm die Sequenz $BARBARA$ ausgegeben wird, wenn man sich zum Zeitpunkt $ν$ im Zustand $A$, $B$ bzw. $R$ befindet? Es gelte $p = 1/4$.

$p_{\rm A} \ =$

$\ \cdot 10^{-3}$
$p_{\rm B} \ =$

$\ \cdot 10^{-3}$
$p_{\rm C} \ =$

$\ \cdot 10^{-3}$

3

Wie groß ist die Wahrscheinlichkeit insgesamt, dass der Generator zu sieben aufeinanderfolgenden Zeitpunkten die Sequenz $BARBARA$ ausgibt. Es gelte weiter $(p = 1/4)$?

$p = 1/4\hspace{-0.1cm}: \hspace{0.3cm}{\rm Pr}(BARBARA)\ =$

$\ \cdot 10^{-3}$

4

Wie ist der Parameter $p_{\rm opt}$ zu wählen, damit $Pr(BARBARA)$ möglichst groß wird? Welche Wahrscheinlichkeit ergibt sich damit für BARBARA?

$p_{\rm opt} \ =$

$p = p_{\rm opt}\hspace{-0.1cm}: \hspace{0.3cm}{\rm Pr}(BARBARA)$ =

$\ \cdot 10^{-3}$


Musterlösung

(1)  Richtig sind der zweite und der dritte Lösungsvorschlag:

  • Die Summe aller abgehenden Pfeile muss immer $1$ sein. Deshalb gilt $q = 1 - p$.
  • Aufgrund der Symmetrie des Markovdiagramms sind die ergodischen Wahrscheinlichkeiten alle gleich:
$${\rm Pr}(A) ={\rm Pr}(B) ={\rm Pr}(R) = 1/3.$$


(2)  Wenn man zum Zeitpunkt $\nu$ im Zustand $B$ ist, ist für den Zeitpunkt $\nu+1$ wegen ${\rm Pr}(B\hspace{0.05cm}|\hspace{0.05cm}B) = 0$ der Zustand $B$ nicht möglich. Man scheitert hier bereits beim Anfangsbuchstaben $B$:

$$p_{\rm B} \; \underline{ =0}.$$

Für die Berechnung von $p_{\rm A}$ ist zu beachten: Ausgehend von $A$ geht man im Markovdiagramm zunächst zu $B$ (mit der Wahrscheinlichkeit $q$), dann fünfmal im Uhrzeigersinn (jeweils mit der Wahrscheinlichkeit $p$) und schließlich noch von $R$ nach $A$ (mit der Wahrscheinlichkeit $q$). Das bedeutet:

$$p_{\rm A} = q^2 \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 = 3^2 / 4^7 \hspace{0.15cm}\underline {\approx 0.549 \hspace{0.05cm}\cdot \hspace{0.05cm} 10^{-3}}.$$

In ähnlicher Weise erhält man:

$$p_{\rm R} = q \hspace{0.05cm}\cdot \hspace{0.05cm} p^6 = 3 / 4^7 \hspace{0.15cm}\underline {\approx 0.183 \hspace{0.05cm}\cdot \hspace{0.05cm} 10^{-3}}.$$


(3)  Durch Mittelung über die bedingten Wahrscheinlichkeiten erhält man:

$${\rm Pr}(BARBARA) = p_{\rm A} \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm Pr}(A) \hspace{0.1cm} + \hspace{0.1cm}p_{\rm B} \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm Pr}(B) \hspace{0.1cm} + \hspace{0.1cm}p_{\rm R} \hspace{0.05cm}\cdot \hspace{0.05cm} {\rm Pr}(R).$$

Dies führt zum Ergebnis:

$${\rm Pr}(BARBARA) = {1}/{3} \cdot \left( q^2 \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 \hspace{0.1cm} +\hspace{0.1cm}0 \hspace{0.1cm} +\hspace{0.1cm}q \hspace{0.05cm}\cdot \hspace{0.05cm} p^6 \right) = \frac{q \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 }{3} \cdot (p+q) = \hspace{-0.15cm} \frac{q \hspace{0.05cm}\cdot \hspace{0.05cm} p^5 }{3} \hspace{0.15cm}\underline { \approx 0.244 \hspace{0.05cm}\cdot \hspace{0.05cm} 10^{-3}}.$$


(4)  Die im Punkt (3) berechnete Wahrscheinlichkeit lautet $p^5 \cdot (1-p)/3$, wobei $q= 1-p$ berücksichtigt ist. Durch Nullsetzen des Differentials erhält man die Bestimmungsgleichung:

$$5 \cdot p^4 - 6 \cdot p^5 = 0 \hspace{0.5cm} \Rightarrow \hspace{0.5cm} p_{\rm opt} = 5/6 \hspace{0.15cm}\underline { \approx \rm 0.833}.$$

Damit ergibt sich ein gegenüberder Teilaufgabe (3) etwa um den Faktor 90 größerer Wert:

$${\rm Pr}(BARBARA) \hspace{0.15cm}\underline { \approx 22 \hspace{0.05cm}\cdot \hspace{0.05cm} 10^{-3}}.$$