Aufgaben:Aufgabe 1.7: WDF des Rice–Fadings: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 3: Zeile 3:
  
 
[[Datei:P_ID2133__Mob_A_1_7.png|right|frame| Rice-Fading für verschiedene Werte von $|z_0|^2$]]
 
[[Datei:P_ID2133__Mob_A_1_7.png|right|frame| Rice-Fading für verschiedene Werte von $|z_0|^2$]]
Wie aus der Grafik zu ersehen, betrachten wir das gleiche Szenario wie in [[Aufgaben:1.6_Rice%E2%80%93Fading_%E2%80%93_AKF/LDS| Aufgabe 1.6]]
+
Wie aus der Grafik zu ersehen, betrachten wir das gleiche Szenario wie in [[Aufgaben:1.6_Rice%E2%80%93Fading_%E2%80%93_AKF/LDS| Aufgabe 1.6]]:
 
* <i>Rice&ndash;Fading</i> mit der Varianz $\sigma^2 = 1$ der Gaußprozesse und dem Parameter $|z_0|$ für den Direktpfad.
 
* <i>Rice&ndash;Fading</i> mit der Varianz $\sigma^2 = 1$ der Gaußprozesse und dem Parameter $|z_0|$ für den Direktpfad.
 
* Hinsichtlich Direktpfad interessieren wir uns für die Parameterwerte $|z_0|^2 = 0, 2, 4, 10$ und $20$ (siehe Grafik).
 
* Hinsichtlich Direktpfad interessieren wir uns für die Parameterwerte $|z_0|^2 = 0, 2, 4, 10$ und $20$ (siehe Grafik).
Zeile 11: Zeile 11:
 
:$${\rm I }_0 (2)  = 2.28\hspace{0.05cm},\hspace{0.2cm}{\rm I }_0 (4)  = 11.30\hspace{0.05cm},\hspace{0.2cm}{\rm I }_0 (3)  = 67.23  
 
:$${\rm I }_0 (2)  = 2.28\hspace{0.05cm},\hspace{0.2cm}{\rm I }_0 (4)  = 11.30\hspace{0.05cm},\hspace{0.2cm}{\rm I }_0 (3)  = 67.23  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
* Der quadratische Erwartungswert &#8658; Leistung des multiplikativen Faktors $|z(t)|$, ist gleich  
+
* Der quadratische Erwartungswert &nbsp; &#8658; &nbsp; Leistung des multiplikativen Faktors $|z(t)|$, ist gleich  
 
:$${\rm E}\left [ a^2 \right ] = {\rm E}\left [ |z(t)|^2 \right ] = 2 \cdot \sigma^2 + |z_0|^2
 
:$${\rm E}\left [ a^2 \right ] = {\rm E}\left [ |z(t)|^2 \right ] = 2 \cdot \sigma^2 + |z_0|^2
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
Zeile 18: Zeile 18:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
In dieser Aufgabe soll die Wahrscheinlichkeit ${\rm Pr}(a &#8804; 1)$ für $|z_0| &ne; 0$ angenähert werden. Dazu gibt es zwei Möglichkeiten, nämlich
+
In dieser Aufgabe soll die Wahrscheinlichkeit ${\rm Pr}(a &#8804; 1)$ für $|z_0| &ne; 0$ angenähert werden. Dazu gibt es zwei Möglichkeiten, nämlich:
* Die <i>Dreiecksnäherung</i>:
+
* die <i>Dreiecksnäherung</i>:
 
:$${\rm Pr}(a \le 1) =  {1}/{2} \cdot f_a(a=1)  
 
:$${\rm Pr}(a \le 1) =  {1}/{2} \cdot f_a(a=1)  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
* die <i>Gaußnäherung</i>: Ist $|z_0| >> \sigma$, so kann die Riceverteilung durch eine Gaußverteilung durch eine Gaußverteilung mit Mittelwert $|z_0|$ und Streuung $\sigma$ angenähert werden.
+
* die <i>Gaußnäherung</i>: Ist $|z_0| >> \sigma$, so kann die Riceverteilung durch eine Gaußverteilung mit Mittelwert $|z_0|$ und Streuung $\sigma$ angenähert werden.
  
  
 
''Hinweise:''
 
''Hinweise:''
 
* Die Aufgabe gehört zum Kapitel [[Mobile_Kommunikation/Nichtfrequenzselektives_Fading_mit_Direktkomponente| Nichtfrequenzselektives Fading mit Direktkomponente]].
 
* Die Aufgabe gehört zum Kapitel [[Mobile_Kommunikation/Nichtfrequenzselektives_Fading_mit_Direktkomponente| Nichtfrequenzselektives Fading mit Direktkomponente]].
* Für die numerischen Lösungen zu den letzten Teilaufgaben empfehlen wir das folgende Interaktionsmodul: [[Komplementäre Gaußsche Fehlerfunktionen]]
+
* Für die numerischen Lösungen zu den letzten Teilaufgaben empfehlen wir das Interaktionsmodul: [[Applets:QFunction|Komplementäre Gaußsche Fehlerfunktionen]]
 
* Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
 
* Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
  

Version vom 4. Dezember 2017, 15:46 Uhr

Rice-Fading für verschiedene Werte von $|z_0|^2$

Wie aus der Grafik zu ersehen, betrachten wir das gleiche Szenario wie in Aufgabe 1.6:

  • Rice–Fading mit der Varianz $\sigma^2 = 1$ der Gaußprozesse und dem Parameter $|z_0|$ für den Direktpfad.
  • Hinsichtlich Direktpfad interessieren wir uns für die Parameterwerte $|z_0|^2 = 0, 2, 4, 10$ und $20$ (siehe Grafik).
  • Die WDF des Betrags $a(t) = |z(t)|$ ist
$$f_a(a) = \frac{a}{\sigma^2} \cdot {\rm exp} [ -\frac{a^2 + |z_0|^2}{2\sigma^2}] \cdot {\rm I}_0 \left [ \frac{a \cdot |z_0|}{\sigma^2} \right ]\hspace{0.05cm}.$$
  • Die modifizierte Besselfunktion nullter Ordnung liefert folgende Werte:
$${\rm I }_0 (2) = 2.28\hspace{0.05cm},\hspace{0.2cm}{\rm I }_0 (4) = 11.30\hspace{0.05cm},\hspace{0.2cm}{\rm I }_0 (3) = 67.23 \hspace{0.05cm}.$$
  • Der quadratische Erwartungswert   ⇒   Leistung des multiplikativen Faktors $|z(t)|$, ist gleich
$${\rm E}\left [ a^2 \right ] = {\rm E}\left [ |z(t)|^2 \right ] = 2 \cdot \sigma^2 + |z_0|^2 \hspace{0.05cm}.$$
  • Mit $z_0 = 0$ wird aus dem Rice–Fading das kritischere Rayleigh–Fading. In diesem Fall gilt für die Wahrscheinlichkeit, dass $a$ im gelb hintergelegten Bereich zwischen $0$ und $1$ liegt:
$$ {\rm Pr}(a \le 1) = 1 - {\rm e}^{-0.5/\sigma^2} \approx 0.4 \hspace{0.05cm}.$$

In dieser Aufgabe soll die Wahrscheinlichkeit ${\rm Pr}(a ≤ 1)$ für $|z_0| ≠ 0$ angenähert werden. Dazu gibt es zwei Möglichkeiten, nämlich:

  • die Dreiecksnäherung:
$${\rm Pr}(a \le 1) = {1}/{2} \cdot f_a(a=1) \hspace{0.05cm}.$$
  • die Gaußnäherung: Ist $|z_0| >> \sigma$, so kann die Riceverteilung durch eine Gaußverteilung mit Mittelwert $|z_0|$ und Streuung $\sigma$ angenähert werden.


Hinweise:


Fragebogen

1

Berechnen Sie einige WDF–Werte für $|z_0| = 0$ und $\sigma = 2$:

$f_a(a = 1) \ = \ $

$f_a(a = 2) \ = \ $

$f_a(a = 3) \ = \ $

2

Es sei $|z_0| = 2$ (blaue Kurve). Wie groß ist ${\rm Pr}(a ≤ 1)$? Verwenden Sie die Dreiecksnäherung.

$|z_0| = 2, \ {\rm Dreieck} \text{:} \hspace{0.4cm} {\rm Pr}(a ≤ 1)\ = \ $

$\ \%$

3

Es sei $|z_0|^2 = 2$ (rote Kurve). Wie groß ist ${\rm Pr}(a ≤ 1)$? Verwenden Sie die Dreiecksnäherung.

$|z_0|^2 = 2, \ {\rm Dreieck} \text{:} \hspace{0.4cm} {\rm Pr}(a ≤ 1) \ = \ $

$\ \%$

4

Es sei $|z_0|^2 = 10$ (grüne Kurve). Wie groß ist ${\rm Pr}(a ≤ 1)$? Verwenden Sie die Gaußnäherung.

$|z_0|^2 = 10, \ {\rm Gauß} \text{:} \hspace{0.4cm} {\rm Pr}(a ≤ 1) \ = \ $

$\ \%$

5

Es sei $|z_0|^2 = 20$ (violette Kurve). Wie groß ist ${\rm Pr}(a ≤ 1)$? Verwenden Sie die Gaußnäherung.

$|z_0|^2 = 20, \ {\rm Gauß} \text{:} \hspace{0.4cm} {\rm Pr}(a ≤ 1) \ = \ $

$\ \%$


Musterlösung

(1)  Mit $|z_0| = 2$ und $\sigma = 2$ lässt sich die Rice–WDF wie folgt darstellen

$$f_a(a) = a \cdot {\rm exp} [ -\frac{a^2 + 4}{2}] \cdot {\rm I}_0 (2a)\hspace{0.05cm}.$$

Daraus ergeben sich die gesuchten Werte:

$$f_a(a = 1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1 \cdot {\rm e}^{-2.5} \cdot {\rm I}_0 (2) = 0.082 \cdot 2.28 \hspace{0.15cm} \underline{ = 0.187}\hspace{0.05cm},$$
$$f_a(a = 2) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 2 \cdot {\rm e}^{-4} \cdot {\rm I}_0 (4) = 2 \cdot 0.0183 \cdot 11.3 \hspace{0.15cm} \underline{ = 0.414}\hspace{0.05cm},$$
$$f_a(a = 3) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 3 \cdot {\rm e}^{-6.5} \cdot {\rm I}_0 (6) = 3 \cdot 0.0015 \cdot 67.23 \hspace{0.15cm} \underline{ = 0.303}\hspace{0.05cm}.$$

Die Ergebnisse passen gut zu der blauen Kurve auf der Angabenseite.


(2)  Mit dem Ergebnis der Teilaufgabe (1) erhält man:

$${\rm Pr}(a \le 1) = \frac{1}{2} \cdot 0.187 \hspace{0.15cm} \underline{ \approx 9.5\,\%} \hspace{0.05cm}.$$

Dieses Ergebnis wird etwas zu groß sein, da die blaue Kurve unterhalb der Verbindungslinie von $(0, 0)$ nach $(1, 0.187)$ liegt ⇒ konvexer Kurvenverlauf.


(3)  Der WDF–Wert $f_a(a = 1) \approx 0.35$ kann aus der Grafik abgelesen werden. Daraus folgt:

$${\rm Pr}(a \le 1) = \frac{1}{2} \cdot 0.35 \hspace{0.15cm} \underline{ \approx 17.5\,\%} \hspace{0.05cm}.$$

Dieser Wahrscheinlichkeitswert wird etwas zu klein sein, da die rote Kurve im Bereich zwischen $0$ und $1$ konkav verläuft.


(4)  Die Gaußnäherung besagt, dass man die Riceverteilung durch eine Gaußverteilung mit Mittelwert $|z_0| = 3.16$ und Streuung $\sigma = 1$ annähern kann, wenn der Quotient $|z_0|/\sigma$ hinreichend groß ist. Dann gilt:

$${\rm Pr}(a \le 1) \approx {\rm Pr}(g \le -2.16) = {\rm Q}(2.16) \hspace{0.15cm} \underline{ \approx 1.5\,\%} \hspace{0.05cm}.$$

Hierbei bezeichnet $g$ eine gaußverteilte Zufallsgröße mit dem Mittelwert $0$ und der Streuung $\sigma = 1$. Der Zahlenwert wurde mit dem angegeben Flash–Modul ermittelt.

Anmerkung: Die Gaußnäherung ist hier sicher mit einem gewissen Fehler verbunden. Aus der Grafik erkennt man, dass der Mittelwert der grünen Kurve nicht bei $a = 3.16$ liegt, sondern eher bei $3.31$. Dann ist die Leistung der Gaußnäherung $(3.31^2 + 1^2 = 12)$ genau so groß wie die der Riceverteilung:

$$|z_0|^2 + 2 \sigma^2= 10 + 2 =12\hspace{0.05cm}.$$


(5)  Nach gleichem Rechenweg ersetzt man hier die Rice–WDF durch eine Gauß–WDF mit Mittelwert $20^{0.5} \approx 4.47$ und Streuung $\sigma = 1$ und man erhält

$${\rm Pr}(a \le 1) \approx {\rm Pr}(g \le -3.37) = {\rm Q}(3.37) { \approx 0.04\,\%} \hspace{0.05cm}.$$

Geht man von der leistungsgleichen Gaußverteilung aus (siehe Anmerkung zur letzten Aufgabe), so ergibt sich der Mittelwert zu $m_g = 21^{0.5} \approx 4.58$, und die Wahrscheinlichkeit wäre dann

$${\rm Pr}(a \le 1) \approx {\rm Q}(3.58) \hspace{0.15cm} \underline{ \approx 0.02\,\%} \hspace{0.05cm}.$$