Aufgaben:Aufgabe 1.7: Codierung bei B–ISDN: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 70: Zeile 70:
 
'''(1)'''&nbsp;  Richtig ist <u>Lösungsvorschlag 2</u>, wie ein Vergleich der Signalverläufe $c(t)$ und $b(t)$ zeigt.
 
'''(1)'''&nbsp;  Richtig ist <u>Lösungsvorschlag 2</u>, wie ein Vergleich der Signalverläufe $c(t)$ und $b(t)$ zeigt.
  
'''(2)'''&nbsp; Die Symboldauer (Bitdauer) von $q(t)$ beträgt $T_{q} \underline{ = 1/R_{q} = 0.488 \ \rm \mu s}$.
+
 
Die Symboldauer $T_{c}$ des AMI–Codes (und des HDB3–Codes) ist genau so groß. Dagegen ist die Symboldauer (Bitdauer) nach der 1T2B–Codierung nur halb so groß: $T_{b} = T_{c}/2 \underline{= 0.244 \ \rm \mu s}$.
+
'''(2)'''&nbsp; Die Symboldauer (Bitdauer) von $q(t)$ beträgt &nbsp; $T_{q} \underline{ = 1/R_{q} = 0.488 \ \rm \mu s}$.
 +
*Die Symboldauer des AMI–Codes (und des HDB3–Codes) ist genau so groß: &nbsp; $T_{c} \underline{ = 0.488 \ \rm \mu s}$.
 +
*Dagegen ist die Symboldauer (Bitdauer) nach der 1T2B–Codierung nur halb so groß: $T_{b} = T_{c}/2 \underline{= 0.244 \ \rm \mu s}$.
 +
 
  
 
'''(3)'''&nbsp; Mit der angegebenen Gleichung ergibt sich mit $M_{q} = 2, M_{c} = 3$ und $T_{c} = T_{q}$:
 
'''(3)'''&nbsp; Mit der angegebenen Gleichung ergibt sich mit $M_{q} = 2, M_{c} = 3$ und $T_{c} = T_{q}$:
:$$r_{\rm HDB3} = 1 - \frac{T_c \cdot {\rm ld}\hspace{0.1cm}(M_q)}{T_q \cdot {\rm ld}\hspace{0.1cm}(M_c)} = 1 - \frac{1}{{\rm ld}\hspace{0.1cm}(3)} \hspace{0.15cm}\underline{= 36.9\,\%} \hspace{0.05cm}.$$
+
:$$r_{\rm HDB3} = 1 - \frac{T_c \cdot {\rm log_2}\hspace{0.1cm}(M_q)}{T_q \cdot {\rm log_2}\hspace{0.1cm}(M_c)} = 1 - \frac{1}{{\rm log_2}\hspace{0.1cm}(3)} \hspace{0.15cm}\underline{= 36.9\,\%} \hspace{0.05cm}.$$
  
'''(4)'''&nbsp; asst man die Gleichung an den Coder 2 an, so erhält man mit $M_{c} = 3, M_{b} = 2, T_{b} = T_{c}/2$:
+
'''(4)'''&nbsp; Passt man die Gleichung an den 1T2B&ndash;Code an, so erhält man mit $M_{c} = 3, M_{b} = 2, T_{b} = T_{c}/2$:
:$$r_{\rm 1T2B} = 1 - \frac{T_b \cdot {\rm ld}\hspace{0.1cm}(M_c)}{T_c \cdot {\rm ld}\hspace{0.1cm}(M_b)} = 1 - \frac{{\rm ld}\hspace{0.1cm}(3)}{2} \hspace{0.15cm}\underline{= 20.7\,\%} \hspace{0.05cm}.$$
+
:$$r_{\rm 1T2B} = 1 - \frac{T_b \cdot {\rm log_2}\hspace{0.1cm}(M_c)}{T_c \cdot {\rm log_2}\hspace{0.1cm}(M_b)} = 1 - \frac{{\rm log_2}\hspace{0.1cm}(3)}{2} \hspace{0.15cm}\underline{= 20.7\,\%} \hspace{0.05cm}.$$
  
'''(5)'''&nbsp; Die Redundanz erhält man, wenn man die angegebene Gleichung auf das Eingangssignal $q(t)$ und das Ausgangssignal $c(t)$ bezieht. Mit $M_{q} = M_{b} = 2$ und $T_{b} = T_{q}/2$ folgt daraus:
+
'''(5)'''&nbsp; Die resultierende Redundanz beider Codes erhält man, wenn man die angegebene Gleichung auf das Eingangssignal $q(t)$ und das Ausgangssignal $c(t)$ bezieht. Mit $M_{q} = M_{b} = 2$ und $T_{b} = T_{q}/2$ folgt daraus:
:$$r_{\rm HDB3+1T2B} = 1 - \frac{T_b \cdot {\rm ld}\hspace{0.1cm}(M_q)}{T_q \cdot {\rm ld}\hspace{0.1cm}(M_b)} = 1 - \frac{T_b}{T_q} \hspace{0.15cm}\underline{= 50\,\%} \hspace{0.05cm}.$$
+
:$$r_{\rm HDB3+1T2B} = 1 - \frac{T_b \cdot {\rm log_2}\hspace{0.1cm}(M_q)}{T_q \cdot {\rm log_2}\hspace{0.1cm}(M_b)} = 1 - \frac{T_b}{T_q} \hspace{0.15cm}\underline{= 50\,\%} \hspace{0.05cm}.$$
 
Zum gleichen Ergebnis kommt man über die Rechnung
 
Zum gleichen Ergebnis kommt man über die Rechnung
:$$1-r_{\rm HDB3+1T2B} \ = \ (1-r_{\rm HDB3}) \cdot (1-r_{\rm 1T2B}) =$$
+
:$$1-r_{\rm HDB3+1T2B} \ = \ (1-r_{\rm HDB3}) \cdot (1-r_{\rm 1T2B}) =(1- 1 +\frac{1}{{\rm log_2}\hspace{0.1cm}(3)}) \cdot (1-1+ \frac{{\rm log_2}\hspace{0.1cm}(3)}{2}) = 50\,\% \hspace{0.05cm}.$$
:$$\hspace{2.7cm} \ = \ (1- 1 +\frac{1}{{\rm ld}\hspace{0.1cm}(3)}) \cdot (1-1+ \frac{{\rm ld}\hspace{0.1cm}(3)}{2}) = 50\,\% \hspace{0.05cm}.$$
 
 
:$$\Rightarrow \hspace{0.3cm}r_{\rm HDB3+1T2B}= 50\,\% \hspace{0.05cm}.$$
 
:$$\Rightarrow \hspace{0.3cm}r_{\rm HDB3+1T2B}= 50\,\% \hspace{0.05cm}.$$
  

Version vom 19. Dezember 2017, 16:49 Uhr

HDB3- und 1T2B-Codierung

Bei herkömmlichem ISDN über Kupferleitungen wird der HDB3–Code verwendet – siehe Aufgabe 1.5: Dieser wurde vom so genannten AMI–Code abgeleitet,

  • ist wie dieser ein Pseudoternärcode,
  • vermeidet aber mehr als drei aufeinander folgende „$0$”–Symbole,
  • indem die strenge AMI–Codierregel bei längeren Nullfolgen bewusst verletzt wird.


Die Grafik zeigt das HDB3–codierte Signal $c(t)$, das sich aus dem binären redundanzfreien Quellensignal $q(t)$ ergibt. Da im Quellensignal nicht mehr als drei aufeinanderfolgende Nullen auftreten, ist $c(t)$ identisch mit dem AMI–codierten Signal.

Das Ende der 1990–Jahre geplante Breitband–ISDN sollte Datenraten bis 155 Mbit/s bereitstellen im Vergleich zu 144 kbit/s des herkömmlichen ISDN mit zwei B–Kanälen und einem D–Kanal. Um diese hohe Datenrate zu erreichen, musste

  • zum einen eine neuere Technik (ATM) verwendet werden,
  • zum zweiten aber auch das Übertragungsmedium gewechselt werden, von der Kupferleitung zur Glasfaser.


Da das HDB3–codierte Signal $c(t) ∈ \{–1, 0, +1\}$ aber mittels Licht nicht übertragen werden kann, war eine zweite Codierung erforderlich. Der hierfür vorgesehene 1T2B–Code ersetzt jedes Ternärsymbol durch zwei Binärsymbole. Das untere Diagramm zeigt beispielhaft das Binärsignal $b(t) ∈ \{0, 1\}$, das sich nach dieser 1T2B–Codierung aus dem Signal $c(t)$ ergibt.

Gehen Sie bei dieser Aufgabe davon aus, dass die Bitrate des redundanzfreien Quellensignals $q(t)$ gleich $R_{q} = 2.048 \ \rm Mbit/s$ beträgt. Die jeweiligen Symboldauern der Signale $q(t), c(t)$ und $b(t)$ werden mit $T_{q}$, $T_{c}$ und $T_{b}$ bezeichnet.

Die äquivalente Bitrate des pseudoternären Signals $c(t)$ ist $R_{c} = {\rm log_2}(3)/T_{c}$, woraus mit der (echten) Bitrate $R_{q} = 1/T_{q}$ des Quellensignals die relative Redundanz des AMI– bzw. HDB3–Codes berechnet werden kann:

$$r_{\rm HDB3} = \frac{R_c - R_q}{R_c}= 1 - \frac{T_c \cdot {\rm log_2}\hspace{0.1cm}(M_q)}{T_q \cdot {\rm log_2}\hspace{0.1cm}(M_c)} \hspace{0.05cm}.$$

Für den 1T2B–Code kann eine ähnliche Gleichung aufgestellt werden, ebenso wie für die beiden Codes in Kombination.



Hinweise:


Fragebogen

1

Welche Zuordnung hat der hier verwendete 1T2B–Code?

$c(t) = +1 \Rightarrow b(t) = 10, \hspace{1cm}c(t) = 0 \Rightarrow b(t) = 00, \hspace{1cm}c(t) = -1 \Rightarrow b(t) = 01,$
$c(t) = +1 \Rightarrow b(t) = 11, \hspace{1cm}c(t) = 0 \Rightarrow b(t) = 01, \hspace{1cm}c(t) = -1 \Rightarrow b(t) = 00,$
$c(t) = +1 \Rightarrow b(t) = 01, \hspace{1cm}c(t) = 0 \Rightarrow b(t) = 11, \hspace{1cm}c(t) = -1 \Rightarrow b(t) = 10.$

2

Wie groß sind die Symboldauern von $q(t), c(t)$ und $b(t)$?

$T_{q} \ = \ $

$\ \rm \mu s$
$T_{c} \ = \ $

$\ \rm \mu s$
$T_{b} \ = \ $

$\ \rm \mu s$

3

Berechnen Sie die relative Redundanz des HDB3–Codes.

$r_{\rm HDB3} \ = \ $

$\ \%$

4

Berechnen Sie die relative Redundanz des 1T2B–Codes.

$r_{\rm 1T2B} \ = \ $

$\ \%$

5

Welche relative Redundanz besitzt das Signal $b(t)$, also die Kombination aus HDB3–Code und 1T2B–Code?

$r_{\rm HDB3+1T2B} \ = \ $

$\ \%$


Musterlösung

(1)  Richtig ist Lösungsvorschlag 2, wie ein Vergleich der Signalverläufe $c(t)$ und $b(t)$ zeigt.


(2)  Die Symboldauer (Bitdauer) von $q(t)$ beträgt   $T_{q} \underline{ = 1/R_{q} = 0.488 \ \rm \mu s}$.

  • Die Symboldauer des AMI–Codes (und des HDB3–Codes) ist genau so groß:   $T_{c} \underline{ = 0.488 \ \rm \mu s}$.
  • Dagegen ist die Symboldauer (Bitdauer) nach der 1T2B–Codierung nur halb so groß: $T_{b} = T_{c}/2 \underline{= 0.244 \ \rm \mu s}$.


(3)  Mit der angegebenen Gleichung ergibt sich mit $M_{q} = 2, M_{c} = 3$ und $T_{c} = T_{q}$:

$$r_{\rm HDB3} = 1 - \frac{T_c \cdot {\rm log_2}\hspace{0.1cm}(M_q)}{T_q \cdot {\rm log_2}\hspace{0.1cm}(M_c)} = 1 - \frac{1}{{\rm log_2}\hspace{0.1cm}(3)} \hspace{0.15cm}\underline{= 36.9\,\%} \hspace{0.05cm}.$$

(4)  Passt man die Gleichung an den 1T2B–Code an, so erhält man mit $M_{c} = 3, M_{b} = 2, T_{b} = T_{c}/2$:

$$r_{\rm 1T2B} = 1 - \frac{T_b \cdot {\rm log_2}\hspace{0.1cm}(M_c)}{T_c \cdot {\rm log_2}\hspace{0.1cm}(M_b)} = 1 - \frac{{\rm log_2}\hspace{0.1cm}(3)}{2} \hspace{0.15cm}\underline{= 20.7\,\%} \hspace{0.05cm}.$$

(5)  Die resultierende Redundanz beider Codes erhält man, wenn man die angegebene Gleichung auf das Eingangssignal $q(t)$ und das Ausgangssignal $c(t)$ bezieht. Mit $M_{q} = M_{b} = 2$ und $T_{b} = T_{q}/2$ folgt daraus:

$$r_{\rm HDB3+1T2B} = 1 - \frac{T_b \cdot {\rm log_2}\hspace{0.1cm}(M_q)}{T_q \cdot {\rm log_2}\hspace{0.1cm}(M_b)} = 1 - \frac{T_b}{T_q} \hspace{0.15cm}\underline{= 50\,\%} \hspace{0.05cm}.$$

Zum gleichen Ergebnis kommt man über die Rechnung

$$1-r_{\rm HDB3+1T2B} \ = \ (1-r_{\rm HDB3}) \cdot (1-r_{\rm 1T2B}) =(1- 1 +\frac{1}{{\rm log_2}\hspace{0.1cm}(3)}) \cdot (1-1+ \frac{{\rm log_2}\hspace{0.1cm}(3)}{2}) = 50\,\% \hspace{0.05cm}.$$
$$\Rightarrow \hspace{0.3cm}r_{\rm HDB3+1T2B}= 50\,\% \hspace{0.05cm}.$$