Aufgaben:Aufgabe 1.6Z: Zwei Optimalsysteme: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
K (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “)
Zeile 4: Zeile 4:
  
  
[[Datei:P_ID1293__Dig_Z_1_6.png|right|frame|Optimalsysteme im Zeit- und Frequenzbereich]]
+
[[Datei:P_ID1293__Dig_Z_1_6.png|right|frame|Optimalsysteme im <br>Zeit- und Frequenzbereich]]
Betrachtet werden zwei binäre Übertragungssysteme '''A''' und '''B''', die bei einem AWGN–Kanal mit Rauschleistungsdichte $N_{0}$ das gleiche Fehlerverhalten aufweisen. In beiden Fällen gilt für die Bitfehlerwahrscheinlichkeit:
+
Betrachtet werden zwei binäre Übertragungssysteme &nbsp;$\rm A$&nbsp; und &nbsp;$\rm B$&nbsp;, die bei einem AWGN–Kanal mit Rauschleistungsdichte &nbsp;$N_{0}$&nbsp; das gleiche Fehlerverhalten aufweisen. In beiden Fällen gilt für die Bitfehlerwahrscheinlichkeit:
 
:$$p_{\rm B} =  {\rm Q} \left( \sqrt{{2 \cdot E_{\rm B}}/{N_0}}\right)\hspace{0.05cm}.$$
 
:$$p_{\rm B} =  {\rm Q} \left( \sqrt{{2 \cdot E_{\rm B}}/{N_0}}\right)\hspace{0.05cm}.$$
*Das System '''A''' verwendet den NRZ–Sendegrundimpuls $g_{s}(t)$ gemäß der oberen Skizze mit der Amplitude $s_{0} = 1 \ \rm V$ und der Dauer $T = 0.5\ \mu s$.  
+
*Das System &nbsp;$\rm A$&nbsp; verwendet den NRZ–Sendegrundimpuls &nbsp;$g_{s}(t)$&nbsp; gemäß der oberen Skizze mit der Amplitude &nbsp;$s_{0} = 1 \ \rm V$&nbsp; und der Dauer &nbsp;$T = 0.5\ \rm &micro; s$.  
*Dagegen besitzt das System '''B''', das mit der gleichen Bitrate wie das System A arbeiten soll, ein rechteckförmiges Sendegrundimpulsspektrum:
+
*Dagegen besitzt das System &nbsp;$\rm B$&nbsp;, das mit der gleichen Bitrate wie das System &nbsp;$\rm A$&nbsp; arbeiten soll, ein rechteckförmiges Sendegrundimpulsspektrum:
 
:$$G_s(f)  =  \left\{ \begin{array}{c} G_0  \\
 
:$$G_s(f)  =  \left\{ \begin{array}{c} G_0  \\
 
  0 \\  \end{array} \right.\quad
 
  0 \\  \end{array} \right.\quad
Zeile 16: Zeile 16:
 
  |f| > f_0 \hspace{0.05cm}.\\
 
  |f| > f_0 \hspace{0.05cm}.\\
 
\end{array}$$
 
\end{array}$$
 +
 +
 +
 +
  
  
 
''Hinweise:''  
 
''Hinweise:''  
*Die Aufgabe gehört zum  Kapitel  [[Digitalsignalübertragung/Optimierung_der_Basisbandübertragungssysteme|Optimierung der Basisbandübertragungssysteme]].
+
*Die Aufgabe gehört zum  Kapitel&nbsp; [[Digitalsignalübertragung/Optimierung_der_Basisbandübertragungssysteme|Optimierung der Basisbandübertragungssysteme]].
 
   
 
   
*Beachten Sie bitte, dass hier die Impulsamplitude in „Volt” angegeben ist, so dass die mittlere Energie pro Bit $(E_{\rm B})$ die Einheit $\rm V^{2}/Hz$ aufweist.
+
*Beachten Sie bitte, dass hier die Impulsamplitude in „Volt” angegeben ist, so dass die mittlere Energie pro Bit &nbsp;$(E_{\rm B})$&nbsp; die Einheit &nbsp;$\rm V^{2}/Hz$&nbsp; aufweist.
  
  
Zeile 33: Zeile 37:
 
$R \ = \ $ { 2 3% } $\ \rm Mbit/s$
 
$R \ = \ $ { 2 3% } $\ \rm Mbit/s$
  
{Berechnen Sie die Energie pro Bit für das System '''A'''.
+
{Berechnen Sie die Energie pro Bit für das System &nbsp;$\rm A$.
 
|type="{}"}
 
|type="{}"}
 
$E_{\rm B} \ = \ $ { 0.5 3% } $\ \cdot 10^{-6} \ \rm V^{2}/Hz$
 
$E_{\rm B} \ = \ $ { 0.5 3% } $\ \cdot 10^{-6} \ \rm V^{2}/Hz$
  
{Welche Aussagen gelten für die Empfangsfilter der Systeme '''A''' und '''B'''?
+
{Welche Aussagen gelten für die Empfangsfilter der Systeme &nbsp;$\rm A$&nbsp; und &nbsp;$\rm B$?
 
|type="[]"}
 
|type="[]"}
+Bei System '''A''' hat $H_{\rm E}(f)$ einen si–förmigen Verlauf.
+
+Bei System &nbsp;$\rm A$&nbsp; hat &nbsp;$H_{\rm E}(f)$&nbsp; einen si–förmigen Verlauf.
+Bei System '''B''' ist $H_{\rm E}(f)$ ein idealer, rechteckförmiger Tiefpass.  
+
+Bei System &nbsp;$\rm B$&nbsp; ist &nbsp;$H_{\rm E}(f)$&nbsp; ein idealer, rechteckförmiger Tiefpass.  
-$H_{\rm E}(f)$ lässt sich bei System '''B''' durch einen Integrator realisieren.
+
-$H_{\rm E}(f)$&nbsp; lässt sich bei System &nbsp;$\rm B$&nbsp; durch einen Integrator realisieren.
  
{Für welche Grenzfrequenz $f_{0}$ weist das System '''B''' die Symboldauer $T$ auf?
+
{Für welche Grenzfrequenz &nbsp;$f_{0}$&nbsp; weist das System &nbsp;$\rm B$&nbsp; die Symboldauer &nbsp;$T$&nbsp; auf?
 
|type="{}"}
 
|type="{}"}
 
$f_{0} \ = \ ${ 1 3% } $\ \rm MHz$
 
$f_{0} \ = \ ${ 1 3% } $\ \rm MHz$
  
{Wie groß ist die konstante Höhe $G_{0}$ des Spektrums von '''B''' zu wählen, damit sich die gleiche Energie pro Bit ergibt wie bei System '''A'''?
+
{Wie groß ist die konstante Höhe &nbsp;$G_{0}$&nbsp; des Spektrums von &nbsp;$\rm B$&nbsp; zu wählen, damit sich die gleiche Energie pro Bit ergibt wie bei System &nbsp;$\rm A$?
 
|type="{}"}
 
|type="{}"}
 
$G_{0} \ = \ $ { 0.5 3% } $\ \cdot 10^{-6} \ \rm V/Hz$
 
$G_{0} \ = \ $ { 0.5 3% } $\ \cdot 10^{-6} \ \rm V/Hz$
Zeile 53: Zeile 57:
 
{Wäre eines der beiden Systeme auch bei Spitzenwertbegrenzung geeignet?
 
{Wäre eines der beiden Systeme auch bei Spitzenwertbegrenzung geeignet?
 
|type="[]"}
 
|type="[]"}
+System '''A''',
+
+System &nbsp;$\rm A$,
- System '''B'''.
+
- System &nbsp;$\rm B$.
  
  

Version vom 4. Februar 2019, 18:52 Uhr


Optimalsysteme im
Zeit- und Frequenzbereich

Betrachtet werden zwei binäre Übertragungssysteme  $\rm A$  und  $\rm B$ , die bei einem AWGN–Kanal mit Rauschleistungsdichte  $N_{0}$  das gleiche Fehlerverhalten aufweisen. In beiden Fällen gilt für die Bitfehlerwahrscheinlichkeit:

$$p_{\rm B} = {\rm Q} \left( \sqrt{{2 \cdot E_{\rm B}}/{N_0}}\right)\hspace{0.05cm}.$$
  • Das System  $\rm A$  verwendet den NRZ–Sendegrundimpuls  $g_{s}(t)$  gemäß der oberen Skizze mit der Amplitude  $s_{0} = 1 \ \rm V$  und der Dauer  $T = 0.5\ \rm µ s$.
  • Dagegen besitzt das System  $\rm B$ , das mit der gleichen Bitrate wie das System  $\rm A$  arbeiten soll, ein rechteckförmiges Sendegrundimpulsspektrum:
$$G_s(f) = \left\{ \begin{array}{c} G_0 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} |f| < f_0 \hspace{0.05cm}, \\ |f| > f_0 \hspace{0.05cm}.\\ \end{array}$$




Hinweise:

  • Beachten Sie bitte, dass hier die Impulsamplitude in „Volt” angegeben ist, so dass die mittlere Energie pro Bit  $(E_{\rm B})$  die Einheit  $\rm V^{2}/Hz$  aufweist.


Fragebogen

1

Mit welcher Bitrate arbeiten die beiden Systeme?

$R \ = \ $

$\ \rm Mbit/s$

2

Berechnen Sie die Energie pro Bit für das System  $\rm A$.

$E_{\rm B} \ = \ $

$\ \cdot 10^{-6} \ \rm V^{2}/Hz$

3

Welche Aussagen gelten für die Empfangsfilter der Systeme  $\rm A$  und  $\rm B$?

Bei System  $\rm A$  hat  $H_{\rm E}(f)$  einen si–förmigen Verlauf.
Bei System  $\rm B$  ist  $H_{\rm E}(f)$  ein idealer, rechteckförmiger Tiefpass.
$H_{\rm E}(f)$  lässt sich bei System  $\rm B$  durch einen Integrator realisieren.

4

Für welche Grenzfrequenz  $f_{0}$  weist das System  $\rm B$  die Symboldauer  $T$  auf?

$f_{0} \ = \ $

$\ \rm MHz$

5

Wie groß ist die konstante Höhe  $G_{0}$  des Spektrums von  $\rm B$  zu wählen, damit sich die gleiche Energie pro Bit ergibt wie bei System  $\rm A$?

$G_{0} \ = \ $

$\ \cdot 10^{-6} \ \rm V/Hz$

6

Wäre eines der beiden Systeme auch bei Spitzenwertbegrenzung geeignet?

System  $\rm A$,
System  $\rm B$.


Musterlösung

(1)  Beide Systeme arbeiten gemäß der Angabe mit gleicher Bitrate. Der NRZ–Sendegrundimpuls von System A hat die Symboldauer $T = 0.5\ \rm \mu s$. Daraus ergibt sich für die Bitrate $R = 1/T$ $ \underline{= 2\ \rm Mbit/s}$.

(2)  Die Energie des NRZ–Sendegrundimpulses von System A ergibt sich zu

$$E_{\rm B} = \int_{-\infty}^{+\infty}g_s^2 (t)\,{\rm d} t = s_0^2 \cdot T = {1\,{\rm V^2}}\cdot {0.5 \cdot 10^{-6}\,{\rm s}}\hspace{0.1cm}\underline { = 0.5 \cdot 10^{-6}\,{\rm V^2/Hz}}\hspace{0.05cm}.$$

(3)  Die beiden ersten Aussagen treffen zu:

  • In beiden Fällen muss $h_{\rm E}(t)$ formgleich mit $g_{s}(t)$ und $H_{\rm E}(f)$ formgleich mit $G_{s}(f)$ sein.
  • Somit ergibt sich beim System A eine rechteckförmige Impulsantwort $h_{\rm E}(t)$ und damit ein si–förmiger Frquenzgang $H_{\rm E}(f)$. *Beim System B ist $H_{\rm E}(f)$ wie $G_{s}(f)$ rechteckförmig und damit die Impulsantwort $h_{\rm E}(t)$ eine si–Funktion.
  • Die letzte Aussage ist falsch: Ein Integrator besitzt eine rechteckförmige Impulsantwort und würde sich für die Realisierung von System A anbieten, nicht jedoch für System B.


(4)  Beim System B stimmt $G_{d}(f)$ mit $G_{s}(f)$ nahezu überein. Lediglich bei der Nyquistfrequenz gibt es einen Unterschied, der sich aber für die hier angestellten Betrachtungen nicht weiter auswirkt: Während $G_{s}(f_{\rm Nyq}) = 1/2$ gilt, ist $G_{d}(f_{\rm Nyq}) = 1/4$.

Es ergibt sich also ein Nyquistsystem mit Rolloff–Faktor $r = 0$. Daraus folgt für die Nyquistfrequenz aus der Bedingung, dass die Symboldauer ebenfalls $T = 0.5\ \rm \mu s$ sein soll:

$$f_{\rm 0} = f_{\rm Nyq} = \frac{1 } {2 \cdot T} = \frac{1 } {2 \cdot 0.5 \cdot 10^{-6}\,{\rm s}}\hspace{0.1cm}\underline {= 1\,{\rm MHz}}\hspace{0.05cm}.$$

(5)  Für die Energie des Sendegrundimpulses kann auch geschrieben werden:

$$E_{\rm B} = \int_{-\infty}^{+\infty}|G_s(f)|^2 \,{\rm d} f = G_0^2 \cdot 2 f_0\hspace{0.05cm}.$$

Mit den Ergebnissen aus (2) und (4) folgt daraus:

$$G_0^2 = \frac{E_{\rm B}}{2 f_0} = \frac{5 \cdot 10^{-7}\,{\rm V^2/Hz}}{2 \cdot 10^{6}\,{\rm Hz}}= 2.5 \cdot 10^{-13}\,{\rm V^2/Hz^2} \hspace{0.3cm}\Rightarrow \hspace{0.3cm}G_0 \hspace{0.1cm}\underline {= 0.5 \cdot 10^{-6}\,{\rm V/Hz}} \hspace{0.05cm}.$$


(6)  Richtig ist der Lösungsvorschlag 1:

  • Das System A stellt auch bei Spitzenwertbegrenzung das optimale System dar.
  • Dagegen wäre das System B aufgrund des äußerst ungünstigen Crestfaktors hierfür denkbar ungeeignet.