Aufgaben:Aufgabe 1.6Z: Ternäre Markovquelle: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 63: Zeile 63:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
<i>Hinweis:</i> Aus Platzgründen verwenden wir in der Musterlösung &bdquo;ld&rdquo; anstelle von  &bdquo;log<sub>2</sub>&rdquo;.
 
 
 
'''(1)'''&nbsp; Die maximale Entropie ergibt sich dann, wenn die Symbole $\rm A$, $\rm B$ und $\rm C$ gleichwahrscheinlich und die Symbole innerhalb der Folge statistisch voneinander unabhängig sind. Dann muss gelten:
 
'''(1)'''&nbsp; Die maximale Entropie ergibt sich dann, wenn die Symbole $\rm A$, $\rm B$ und $\rm C$ gleichwahrscheinlich und die Symbole innerhalb der Folge statistisch voneinander unabhängig sind. Dann muss gelten:
 +
[[Datei:Inf_Z_1_6_vers2.png|right|frame|Übergangsdiagramm für $p = 1/4$, $q = 1$]]
 
* $p_{\rm A} = p_{\rm A|A} =  p_{\rm A|B} = p_{\rm A|C}  = 1/3$,
 
* $p_{\rm A} = p_{\rm A|A} =  p_{\rm A|B} = p_{\rm A|C}  = 1/3$,
 
* $p_{\rm B} = p_{\rm B|A} =  p_{\rm B|B} = p_{\rm B|C}  = 1/3$,
 
* $p_{\rm B} = p_{\rm B|A} =  p_{\rm B|B} = p_{\rm B|C}  = 1/3$,
Zeile 72: Zeile 71:
  
 
Daraus lassen sich die gesuchten Werte bestimmen:
 
Daraus lassen sich die gesuchten Werte bestimmen:
*Beispielsweise erhält man aus $p_{\rm C|C}  = 1/3$ der Wert $p \hspace{0.15cm}\underline{= 1/3}$.  
+
*Beispielsweise erhält man aus $p_{\rm C|C}  = 1/3$ den Wert &nbsp;$p \hspace{0.15cm}\underline{= 1/3}$.  
*Berücksichtigt man noch die Beziehung $p_{\rm A|A} = p \cdot q$, so folgt $q \hspace{0.15cm}\underline{= 1}$.
+
*Berücksichtigt man noch die Beziehung &nbsp;$p_{\rm A|A} = p \cdot q$, so folgt &nbsp;$q \hspace{0.15cm}\underline{= 1}$.
* Damit ergibt sich die maximale Entropie $H_\text{max} ={\rm  ld} \ 3\hspace{0.15cm}\underline{= 1.585\  \rm bit/Symbol}$.
+
* Damit ergibt sich die maximale Entropie &nbsp;$H_\text{max} ={\rm  log_2} \ 3\hspace{0.15cm}\underline{= 1.585\  \rm bit/Symbol}$.
  
  
[[Datei:Inf_Z_1_6_vers2.png|right|Übergangsdiagramm für <i>p</i> = 1/4, <i>q</i> = 1]]
+
'''(2)'''&nbsp; Mit den Parameterwerten Übergangsdiagramm für $p = 1/4$ &nbsp;und&nbsp; $q = 1$ ergibt sich das nebenstehende Übergangsdiagramm, das folgende Symmetrien aufweist:
'''(2)'''&nbsp; Mit den Parameterwerten Übergangsdiagramm für $p = 1/4$ und  $q = 1$ ergibt sich das nebenstehende Übergangsdiagramm, das folgende Symmetrien aufweist:
 
 
* $p_{\rm A|A} =  p_{\rm B|B} = p_{\rm C|C}  = 1/4$ (rot markiert),
 
* $p_{\rm A|A} =  p_{\rm B|B} = p_{\rm C|C}  = 1/4$ (rot markiert),
 
* $p_{\rm A|B} =  p_{\rm B|C} = p_{\rm C|A}  = 1/2$ (grün markiert),
 
* $p_{\rm A|B} =  p_{\rm B|C} = p_{\rm C|A}  = 1/2$ (grün markiert),
 
*$p_{\rm A|C} =  p_{\rm B|A} = p_{\rm C|CB}  = 1/4$ (blau markiert).
 
*$p_{\rm A|C} =  p_{\rm B|A} = p_{\rm C|CB}  = 1/4$ (blau markiert).
 +
  
 
Es ist offensichtlich, dass die Symbolwahrscheinlichkeiten alle gleich sind:
 
Es ist offensichtlich, dass die Symbolwahrscheinlichkeiten alle gleich sind:
 
:$$p_{\rm A} = p_{\rm B} = p_{\rm C} = 1/3 \hspace{0.3cm}
 
:$$p_{\rm A} = p_{\rm B} = p_{\rm C} = 1/3 \hspace{0.3cm}
\Rightarrow \hspace{0.3cm} H_1 =  {\rm ld}\hspace{0.1cm} 3  \hspace{0.15cm} \underline {= 1.585 \,{\rm bit/Symbol}}  
+
\Rightarrow \hspace{0.3cm} H_1 =  {\rm log_2}\hspace{0.1cm} 3  \hspace{0.15cm} \underline {= 1.585 \,{\rm bit/Symbol}}  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
'''(3)'''&nbsp; Für die zweite Entropienäherung benötigt man die $3^2 = 9$ Verbundwahrscheinlichkeiten. Mit dem Ergebnis der Teilaufgabe (2) erhält man hierfür:
+
 
 +
'''(3)'''&nbsp; Für die zweite Entropienäherung benötigt man $3^2 = 9$ Verbundwahrscheinlichkeiten. Mit dem Ergebnis aus '''(2)''' erhält man hierfür:
 
:$$p_{\rm AA} = p_{\rm BB}= p_{\rm CC}= p_{\rm AC}=p_{\rm BA}=p_{\rm CB}=1/12  \hspace{0.05cm},\hspace{0.5cm}
 
:$$p_{\rm AA} = p_{\rm BB}= p_{\rm CC}= p_{\rm AC}=p_{\rm BA}=p_{\rm CB}=1/12  \hspace{0.05cm},\hspace{0.5cm}
 
p_{\rm AB} = p_{\rm BC}=p_{\rm CA}=1/6$$
 
p_{\rm AB} = p_{\rm BC}=p_{\rm CA}=1/6$$
 
:$$\Rightarrow \hspace{0.2cm} H_2  = \frac{1}{2} \cdot \left [ 6 \cdot \frac{1}{12} \cdot {\rm ld}\hspace{0.1cm} 12  +
 
:$$\Rightarrow \hspace{0.2cm} H_2  = \frac{1}{2} \cdot \left [ 6 \cdot \frac{1}{12} \cdot {\rm ld}\hspace{0.1cm} 12  +
  3 \cdot \frac{1}{6} \cdot {\rm ld}\hspace{0.1cm} 6 \right ] =  \frac{1}{4} \cdot {\rm ld}\hspace{0.1cm} 4  + \frac{1}{4} \cdot {\rm ld}\hspace{0.1cm} 3 +  \frac{1}{4} \cdot {\rm ld}\hspace{0.1cm} 2 +  \frac{1}{4} \cdot {\rm ld}\hspace{0.1cm} 3  
+
  3 \cdot \frac{1}{6} \cdot {\rm log_2}\hspace{0.1cm} 6 \right ] =  \frac{1}{4} \cdot {\rm log_2}\hspace{0.1cm} 4  + \frac{1}{4} \cdot {\rm log_2}\hspace{0.1cm} 3 +  \frac{1}{4} \cdot {\rm log_2}\hspace{0.1cm} 2 +  \frac{1}{4} \cdot {\rm log_2}\hspace{0.1cm} 3  
  = \frac{3}{4} + \frac{{\rm ld}\hspace{0.1cm} 3}{2} \hspace{0.15cm} \underline {= 1.5425 \,{\rm bit/Symbol}}  
+
  = \frac{3}{4} + \frac{{\rm log_2}\hspace{0.1cm} 3}{2} \hspace{0.15cm} \underline {= 1.5425 \,{\rm bit/Symbol}}  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
 +
  
 
'''(4)'''&nbsp; Aufgrund der Markoveigenschaft der Quelle gilt
 
'''(4)'''&nbsp; Aufgrund der Markoveigenschaft der Quelle gilt
:$$H = 2 \cdot H_2 - H_1 = [ {3}/{2} + {\rm ld}\hspace{0.1cm} 3] -  {\rm ld}\hspace{0.1cm} 3\hspace{0.15cm} \underline {= 1.5 \,{\rm bit/Symbol}}  
+
:$$H = 2 \cdot H_2 - H_1 = \big [ {3}/{2} + {\rm log_2}\hspace{0.1cm} 3 \big ] -  {\rm log_2}\hspace{0.1cm} 3\hspace{0.15cm} \underline {= 1.5 \,{\rm bit/Symbol}}  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
 
Zum gleichen Ergebnis würde man mit folgender Rechnung kommen:
 
Zum gleichen Ergebnis würde man mit folgender Rechnung kommen:
:$$H= p_{\rm AA}  \cdot {\rm ld}\hspace{0.1cm}\frac {1}{ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A}} + p_{\rm AB}  \cdot {\rm ld}\hspace{0.1cm}\frac {1}{ p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}} +  ... \hspace{0.1cm}= 6 \cdot \frac{1}{12} \cdot {\rm ld}\hspace{0.1cm} 4 + 3 \cdot \frac{1}{16} \cdot {\rm ld}\hspace{0.1cm} 2
+
:$$H= p_{\rm AA}  \cdot {\rm log_2}\hspace{0.1cm}\frac {1}{ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A}} + p_{\rm AB}  \cdot {\rm log_2}\hspace{0.1cm}\frac {1}{ p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}} +  ... \hspace{0.1cm}= 6 \cdot \frac{1}{12} \cdot {\rm log_2}\hspace{0.1cm} 4 + 3 \cdot \frac{1}{16} \cdot {\rm log_2}\hspace{0.1cm} 2
 
  \hspace{0.15cm} \underline {= 1.5 \,{\rm bit/Symbol}}
 
  \hspace{0.15cm} \underline {= 1.5 \,{\rm bit/Symbol}}
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
[[Datei:Inf_Z_1_6e_vers2.png|right|Übergangsdiagramm für <i>p</i> = 1/4, <i>q</i> = 0]]
+
[[Datei:Inf_Z_1_6e_vers2.png|right|frame|Übergangsdiagramm für $p = 1/4$, $q = 0$]]
'''(5)'''&nbsp; Aus dem nebenstehendenm Übergangsdiagramm mit den aktuellen Parametern erkennt man, dass bei Stationarität $p_{\rm B}  = 0$ gelten wird, da $\rm B$ höchstens zum Starzeitpunkt einmal auftreten kann. Es liegt also eine binäre Markovkette mit den Symbolen $\rm A$ und $\rm C$ vor. Die Symbolwahrscheinlichkeiten ergeben sich zu:
+
'''(5)'''&nbsp; Aus dem nebenstehendenm Übergangsdiagramm mit den aktuellen Parametern erkennt man, dass bei Stationarität $p_{\rm B}  = 0$ gelten wird, da $\rm B$ höchstens zum Starzeitpunkt einmal auftreten kann.  
 +
*Es liegt also eine binäre Markovkette mit den Symbolen $\rm A$ und $\rm C$ vor.  
 +
*Die Symbolwahrscheinlichkeiten ergeben sich zu:
 
:$$p_{\rm A} = 0.5 \cdot p_{\rm C} \hspace{0.05cm}, \hspace{0.2cm}p_{\rm A} + p_{\rm C} = 1 \hspace{0.3cm}
 
:$$p_{\rm A} = 0.5 \cdot p_{\rm C} \hspace{0.05cm}, \hspace{0.2cm}p_{\rm A} + p_{\rm C} = 1 \hspace{0.3cm}
 
\Rightarrow \hspace{0.3cm} p_{\rm A} = 1/3 \hspace{0.05cm}, \hspace{0.2cm} p_{\rm C} = 2/3\hspace{0.05cm}.  $$
 
\Rightarrow \hspace{0.3cm} p_{\rm A} = 1/3 \hspace{0.05cm}, \hspace{0.2cm} p_{\rm C} = 2/3\hspace{0.05cm}.  $$
  
Damit erhält man folgende Wahrscheinlichkeiten:
+
*Damit erhält man folgende Wahrscheinlichkeiten:
 
:$$p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A} \hspace{0.1cm} =  \hspace{0.1cm}0\hspace{0.7cm} \Rightarrow \hspace{0.3cm} p_{\rm AA} = 0 \hspace{0.05cm},$$
 
:$$p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A} \hspace{0.1cm} =  \hspace{0.1cm}0\hspace{0.7cm} \Rightarrow \hspace{0.3cm} p_{\rm AA} = 0 \hspace{0.05cm},$$
 
:$$ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}C} =1/2\hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_{\rm CA} =  
 
:$$ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}C} =1/2\hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_{\rm CA} =  
  p_{\rm C} \cdot p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}C} = 2/3 \cdot 1/2 = 1/3 \hspace{0.05cm},\hspace{0.2cm}{\rm ld}\hspace{0.1cm}(1/p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}C} )= 1\hspace{0.05cm},$$
+
  p_{\rm C} \cdot p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}C} = 2/3 \cdot 1/2 = 1/3 \hspace{0.05cm},\hspace{0.2cm}{\rm log_2}\hspace{0.1cm}(1/p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}C} )= 1\hspace{0.05cm},$$
 
:$$ p_{\rm C\hspace{0.01cm}|\hspace{0.01cm}A} =1\hspace{0.7cm} \Rightarrow \hspace{0.3cm} p_{\rm AC} =  
 
:$$ p_{\rm C\hspace{0.01cm}|\hspace{0.01cm}A} =1\hspace{0.7cm} \Rightarrow \hspace{0.3cm} p_{\rm AC} =  
  p_{\rm A} \cdot p_{\rm C\hspace{0.01cm}|\hspace{0.01cm}A} = 1/3 \cdot 1 = 1/3 \hspace{0.05cm},\hspace{0.61cm}{\rm ld}\hspace{0.1cm}(1/p_{\rm C\hspace{0.01cm}|\hspace{0.01cm}A} )= 0\hspace{0.05cm},$$
+
  p_{\rm A} \cdot p_{\rm C\hspace{0.01cm}|\hspace{0.01cm}A} = 1/3 \cdot 1 = 1/3 \hspace{0.05cm},\hspace{0.61cm}{\rm log_2}\hspace{0.1cm}(1/p_{\rm C\hspace{0.01cm}|\hspace{0.01cm}A} )= 0\hspace{0.05cm},$$
 
:$$ p_{\rm C\hspace{0.01cm}|\hspace{0.01cm}C} =1/2\hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_{\rm CC} =  
 
:$$ p_{\rm C\hspace{0.01cm}|\hspace{0.01cm}C} =1/2\hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_{\rm CC} =  
  p_{\rm C} \cdot p_{\rm C\hspace{0.01cm}|\hspace{0.01cm}C} = 2/3 \cdot 1/2 = 1/3\hspace{0.05cm},\hspace{0.2cm}{\rm ld}\hspace{0.1cm}(1/p_{\rm C\hspace{0.01cm}|\hspace{0.01cm}C} )= 1 $$
+
  p_{\rm C} \cdot p_{\rm C\hspace{0.01cm}|\hspace{0.01cm}C} = 2/3 \cdot 1/2 = 1/3\hspace{0.05cm},\hspace{0.2cm}{\rm log_2}\hspace{0.1cm}(1/p_{\rm C\hspace{0.01cm}|\hspace{0.01cm}C} )= 1 $$
:$$\Rightarrow \hspace{0.25cm} H  = p_{\rm AA}  \cdot {\rm ld}\hspace{0.1cm}\frac {1}{ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A}}  +p_{\rm CA}  \cdot {\rm ld}\hspace{0.1cm}\frac {1}{ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}C}}+ p_{\rm AC} \cdot {\rm ld}\hspace{0.1cm}\frac {1}{ p_{\rm C\hspace{0.01cm}|\hspace{0.01cm}A}} +  
+
:$$\Rightarrow \hspace{0.25cm} H  = p_{\rm AA}  \cdot {\rm log_2}\hspace{0.1cm}\frac {1}{ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A}}  +p_{\rm CA}  \cdot {\rm log_2}\hspace{0.1cm}\frac {1}{ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}C}}+ p_{\rm AC} \cdot {\rm log_2}\hspace{0.1cm}\frac {1}{ p_{\rm C\hspace{0.01cm}|\hspace{0.01cm}A}} +  
   p_{\rm CC}  \cdot {\rm ld}\hspace{0.1cm}\frac {1}{ p_{\rm C\hspace{0.01cm}|\hspace{0.01cm}C}}=
+
   p_{\rm CC}  \cdot {\rm log_2}\hspace{0.1cm}\frac {1}{ p_{\rm C\hspace{0.01cm}|\hspace{0.01cm}C}}=
 
0 + 1/3 \cdot 1 + 1/3 \cdot 0 + 1/3 \cdot 1
 
0 + 1/3 \cdot 1 + 1/3 \cdot 0 + 1/3 \cdot 1
 
  \hspace{0.15cm} \underline {= 0.667 \,{\rm bit/Symbol}}  
 
  \hspace{0.15cm} \underline {= 0.667 \,{\rm bit/Symbol}}  

Version vom 19. September 2018, 11:07 Uhr

Ternäre Markovquelle

Die Grafik zeigt eine Markovquelle mit $M = 3$ Zuständen $\rm A$, $\rm B$ und $\rm C$. Für die beiden Parameter dieses Markovprozesses soll gelten:

$$0 \le p \le 0.5 \hspace{0.05cm},\hspace{0.2cm}0 \le q \le 1 \hspace{0.05cm}.$$

Aufgrund der Markoveigenschaft dieser Quelle kann die Entropie auf unterschiedliche Weise ermittelt werden:

  • Man berechnet die beiden ersten Entropienäherungen $H_1$ und $H_2$. Dann gilt für die tatsächliche Entropie:
$$H = 2 \cdot H_{\rm 2} - H_{\rm 1} \hspace{0.05cm}.$$
  • Nach der direkten Berechnungsmethode kann die Entropie aber auch wie folgt berechnet werden (insgesamt 9 Terme):
$$H = p_{\rm AA} \cdot {\rm log_2}\hspace{0.1cm}\frac {1}{ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A}} + p_{\rm AB} \cdot {\rm log_2}\hspace{0.1cm}\frac {1}{ p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}} + \ \text{...} \hspace{0.05cm}, \ \text{wobei} \ p_{\rm AA} = p_{\rm A} \cdot p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A} \hspace{0.05cm},\hspace{0.2cm} p_{\rm AB} = p_{\rm A} \cdot p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A} \hspace{0.05cm}, \ \text{...}$$



Hinweise:


Fragebogen

1

Für welche Parameter  $p$  und  $q$ ergibt sich die maximale Entropie pro Symbol?

$p \ = \ $

$q\ = \ $

$H_\text{max} \ = \ $

$\ \rm bit/Symbol$

2

Es sei  $p = 1/4$  und  $q = 1$. Welcher Wert ergibt sich in diesem Fall für die erste Entropienäherung?

$H_1 = \ \ $

$\ \rm bit/Symbol$

3

Weiterhin gelte  $p = 1/4$  und  $q = 1$. Welcher Wert ergibt sich in diesem Fall für die zweite Entropienäherung?

$H_2 = \ \ $

$\ \rm bit/Symbol$

4

Wie groß ist die tatsächliche Quellenentropie mit  $p = 1/4$  und  $q = 1$?

$H = \ \ $

$\ \rm bit/Symbol$

5

Wie groß ist die tatsächliche Quellenentropie mit  $p = 1/2$  und  $q = 0$?

$H = \ \ $

$\ \rm bit/Symbol$


Musterlösung

(1)  Die maximale Entropie ergibt sich dann, wenn die Symbole $\rm A$, $\rm B$ und $\rm C$ gleichwahrscheinlich und die Symbole innerhalb der Folge statistisch voneinander unabhängig sind. Dann muss gelten:

Übergangsdiagramm für $p = 1/4$, $q = 1$
  • $p_{\rm A} = p_{\rm A|A} = p_{\rm A|B} = p_{\rm A|C} = 1/3$,
  • $p_{\rm B} = p_{\rm B|A} = p_{\rm B|B} = p_{\rm B|C} = 1/3$,
  • $p_{\rm C} = p_{\rm C|A} = p_{\rm C|B} = p_{\rm C|C} = 1/3$.


Daraus lassen sich die gesuchten Werte bestimmen:

  • Beispielsweise erhält man aus $p_{\rm C|C} = 1/3$ den Wert  $p \hspace{0.15cm}\underline{= 1/3}$.
  • Berücksichtigt man noch die Beziehung  $p_{\rm A|A} = p \cdot q$, so folgt  $q \hspace{0.15cm}\underline{= 1}$.
  • Damit ergibt sich die maximale Entropie  $H_\text{max} ={\rm log_2} \ 3\hspace{0.15cm}\underline{= 1.585\ \rm bit/Symbol}$.


(2)  Mit den Parameterwerten Übergangsdiagramm für $p = 1/4$  und  $q = 1$ ergibt sich das nebenstehende Übergangsdiagramm, das folgende Symmetrien aufweist:

  • $p_{\rm A|A} = p_{\rm B|B} = p_{\rm C|C} = 1/4$ (rot markiert),
  • $p_{\rm A|B} = p_{\rm B|C} = p_{\rm C|A} = 1/2$ (grün markiert),
  • $p_{\rm A|C} = p_{\rm B|A} = p_{\rm C|CB} = 1/4$ (blau markiert).


Es ist offensichtlich, dass die Symbolwahrscheinlichkeiten alle gleich sind:

$$p_{\rm A} = p_{\rm B} = p_{\rm C} = 1/3 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} H_1 = {\rm log_2}\hspace{0.1cm} 3 \hspace{0.15cm} \underline {= 1.585 \,{\rm bit/Symbol}} \hspace{0.05cm}.$$


(3)  Für die zweite Entropienäherung benötigt man $3^2 = 9$ Verbundwahrscheinlichkeiten. Mit dem Ergebnis aus (2) erhält man hierfür:

$$p_{\rm AA} = p_{\rm BB}= p_{\rm CC}= p_{\rm AC}=p_{\rm BA}=p_{\rm CB}=1/12 \hspace{0.05cm},\hspace{0.5cm} p_{\rm AB} = p_{\rm BC}=p_{\rm CA}=1/6$$
$$\Rightarrow \hspace{0.2cm} H_2 = \frac{1}{2} \cdot \left [ 6 \cdot \frac{1}{12} \cdot {\rm ld}\hspace{0.1cm} 12 + 3 \cdot \frac{1}{6} \cdot {\rm log_2}\hspace{0.1cm} 6 \right ] = \frac{1}{4} \cdot {\rm log_2}\hspace{0.1cm} 4 + \frac{1}{4} \cdot {\rm log_2}\hspace{0.1cm} 3 + \frac{1}{4} \cdot {\rm log_2}\hspace{0.1cm} 2 + \frac{1}{4} \cdot {\rm log_2}\hspace{0.1cm} 3 = \frac{3}{4} + \frac{{\rm log_2}\hspace{0.1cm} 3}{2} \hspace{0.15cm} \underline {= 1.5425 \,{\rm bit/Symbol}} \hspace{0.05cm}.$$


(4)  Aufgrund der Markoveigenschaft der Quelle gilt

$$H = 2 \cdot H_2 - H_1 = \big [ {3}/{2} + {\rm log_2}\hspace{0.1cm} 3 \big ] - {\rm log_2}\hspace{0.1cm} 3\hspace{0.15cm} \underline {= 1.5 \,{\rm bit/Symbol}} \hspace{0.05cm}.$$

Zum gleichen Ergebnis würde man mit folgender Rechnung kommen:

$$H= p_{\rm AA} \cdot {\rm log_2}\hspace{0.1cm}\frac {1}{ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A}} + p_{\rm AB} \cdot {\rm log_2}\hspace{0.1cm}\frac {1}{ p_{\rm B\hspace{0.01cm}|\hspace{0.01cm}A}} + ... \hspace{0.1cm}= 6 \cdot \frac{1}{12} \cdot {\rm log_2}\hspace{0.1cm} 4 + 3 \cdot \frac{1}{16} \cdot {\rm log_2}\hspace{0.1cm} 2 \hspace{0.15cm} \underline {= 1.5 \,{\rm bit/Symbol}} \hspace{0.05cm}.$$
Übergangsdiagramm für $p = 1/4$, $q = 0$

(5)  Aus dem nebenstehendenm Übergangsdiagramm mit den aktuellen Parametern erkennt man, dass bei Stationarität $p_{\rm B} = 0$ gelten wird, da $\rm B$ höchstens zum Starzeitpunkt einmal auftreten kann.

  • Es liegt also eine binäre Markovkette mit den Symbolen $\rm A$ und $\rm C$ vor.
  • Die Symbolwahrscheinlichkeiten ergeben sich zu:
$$p_{\rm A} = 0.5 \cdot p_{\rm C} \hspace{0.05cm}, \hspace{0.2cm}p_{\rm A} + p_{\rm C} = 1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_{\rm A} = 1/3 \hspace{0.05cm}, \hspace{0.2cm} p_{\rm C} = 2/3\hspace{0.05cm}. $$
  • Damit erhält man folgende Wahrscheinlichkeiten:
$$p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A} \hspace{0.1cm} = \hspace{0.1cm}0\hspace{0.7cm} \Rightarrow \hspace{0.3cm} p_{\rm AA} = 0 \hspace{0.05cm},$$
$$ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}C} =1/2\hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_{\rm CA} = p_{\rm C} \cdot p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}C} = 2/3 \cdot 1/2 = 1/3 \hspace{0.05cm},\hspace{0.2cm}{\rm log_2}\hspace{0.1cm}(1/p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}C} )= 1\hspace{0.05cm},$$
$$ p_{\rm C\hspace{0.01cm}|\hspace{0.01cm}A} =1\hspace{0.7cm} \Rightarrow \hspace{0.3cm} p_{\rm AC} = p_{\rm A} \cdot p_{\rm C\hspace{0.01cm}|\hspace{0.01cm}A} = 1/3 \cdot 1 = 1/3 \hspace{0.05cm},\hspace{0.61cm}{\rm log_2}\hspace{0.1cm}(1/p_{\rm C\hspace{0.01cm}|\hspace{0.01cm}A} )= 0\hspace{0.05cm},$$
$$ p_{\rm C\hspace{0.01cm}|\hspace{0.01cm}C} =1/2\hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_{\rm CC} = p_{\rm C} \cdot p_{\rm C\hspace{0.01cm}|\hspace{0.01cm}C} = 2/3 \cdot 1/2 = 1/3\hspace{0.05cm},\hspace{0.2cm}{\rm log_2}\hspace{0.1cm}(1/p_{\rm C\hspace{0.01cm}|\hspace{0.01cm}C} )= 1 $$
$$\Rightarrow \hspace{0.25cm} H = p_{\rm AA} \cdot {\rm log_2}\hspace{0.1cm}\frac {1}{ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}A}} +p_{\rm CA} \cdot {\rm log_2}\hspace{0.1cm}\frac {1}{ p_{\rm A\hspace{0.01cm}|\hspace{0.01cm}C}}+ p_{\rm AC} \cdot {\rm log_2}\hspace{0.1cm}\frac {1}{ p_{\rm C\hspace{0.01cm}|\hspace{0.01cm}A}} + p_{\rm CC} \cdot {\rm log_2}\hspace{0.1cm}\frac {1}{ p_{\rm C\hspace{0.01cm}|\hspace{0.01cm}C}}= 0 + 1/3 \cdot 1 + 1/3 \cdot 0 + 1/3 \cdot 1 \hspace{0.15cm} \underline {= 0.667 \,{\rm bit/Symbol}} \hspace{0.05cm}.$$