Aufgaben:Aufgabe 1.6: Wurzel-Nyquist-System: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Digitalsignalübertragung/1.3 Optimierung der Basisbandsysteme [[Datei:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple…“)
 
 
(16 dazwischenliegende Versionen von 4 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/1.3 Optimierung der Basisbandsysteme
+
{{quiz-Header|Buchseite=Digitalsignalübertragung/Optimierung der Basisbandübertragungssysteme
 +
}}
  
  
[[Datei:|right|]]
+
[[Datei:P_ID1292__Dig_A_1_6.png|right|frame|Cosinus-Spektrum&nbsp; (Sender & Empfänger)]]
 +
Die nebenstehende Grafik zeigt
 +
*das Spektrum &nbsp;$G_{s}(f)$&nbsp; des Sendegrundimpulses,
 +
*den Frequenzgang &nbsp;$H_{\rm E}(f)$&nbsp; des Empfangsfilters
 +
 
 +
 
 +
eines binären und bipolaren Übertragungssystems,&nbsp; die zueinander formgleich sind:
 +
:$$G_s(f)  =  \left\{ \begin{array}{c} A \cdot \cos \left( \frac {\pi \cdot f}{2 \cdot f_2} \right)  \\
 +
\\ 0 \\  \end{array} \right.\quad
 +
\begin{array}{*{1}c} {\rm{f\ddot{u}r}}\\  \\  \\ \end{array}
 +
\begin{array}{*{20}c}|f| \le f_2 \hspace{0.05cm}, \\ \\  {\rm sonst }\hspace{0.05cm}, \\
 +
\end{array}$$
 +
:$$H_{\rm E }(f)  =  \left\{ \begin{array}{c} 1 \cdot \cos \left( \frac {\pi \cdot f}{2 \cdot f_2} \right)  \\
 +
\\ 0 \\  \end{array} \right.\quad
 +
\begin{array}{*{1}c} {\rm{f\ddot{u}r}}\\  \\  \\ \end{array}
 +
\begin{array}{*{20}c}|f| \le f_2 \hspace{0.05cm}, \\ \\  {\rm sonst }\hspace{0.05cm}. \\
 +
\end{array}$$
 +
In der gesamten Aufgabe gelte&nbsp; &nbsp;$A = 10^{–6} \ \rm V/Hz$&nbsp; und &nbsp;$f_{2} = 1 \ \rm MHz$.
 +
 
 +
*Unter der Voraussetzung,&nbsp; dass die Bitrate &nbsp;$R = 1/T$&nbsp; richtig gewählt wird,&nbsp; erfüllt der Detektionsgrundimpuls &nbsp;$g_{d}(t) = g_{s}(t) ∗ h_{\rm E}(t)$&nbsp; das erste Nyquistkriterium.
 +
*Bei der dazugehörigen Spektralfunktion &nbsp;$G_{d}(f)$&nbsp; erfolgt dabei der Flankenabfall cosinusförmig ähnlich einem Cosinus–Rolloff–Spektrum.
 +
*Der Rolloff–Faktor &nbsp;$r$&nbsp; ist in dieser Aufgabe zu ermitteln.
 +
 
 +
 
 +
 
 +
 
 +
Hinweise:
 +
*Die Aufgabe gehört zum  Kapitel  &nbsp;[[Digitalsignalübertragung/Optimierung_der_Basisbandübertragungssysteme|"Optimierung der Basisbandübertragungssysteme"]].
 +
 +
*Zahlenwerte der Q–Funktion liefert zum Beispiel das interaktive HTML5/JS Applet &nbsp;[[Applets:Komplementäre_Gaußsche_Fehlerfunktionen|"Komplementäre Gaußsche Fehlerfunktionen"]].
 +
 
 +
*Der Crestfaktor ist der Qotient aus Maximalwert und Effektivwert des Sendesignals und damit ein Maß für die sendeseitigen Impulsinterferenzen:
 +
:$$C_{\rm S} =  \frac{s_0}{\sqrt{E_{\rm B}/T}} = \frac{{\rm Max}[s(t)]}{\sqrt{{\rm E}[s^2(t)]}}=  {s_0}/{s_{\rm eff}}.$$
  
  
Zeile 9: Zeile 42:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{Berechnen Sie das Nyquistspektrum &nbsp;$G_{d}(f)$.&nbsp; Wie groß sind die Nyquistfrequenz und der Rolloff–Faktor?
 +
|type="{}"}
 +
$f_{\rm Nyq} \ = \ ${ 0.5 3% } $\ \rm MHz$
 +
$r \ = \ ${ 1 3% }
 +
 
 +
{Wie groß ist die Bitrate des vorliegenden Nyquistsystems?
 +
|type="{}"}
 +
$R \ = \ $ { 1 3% } $\ \rm Mbit/s$
 +
 
 +
{Warum handelt es sich unter der Nebenbedingung „Leistungsbegrenzung” um ein optimales System?
 
|type="[]"}
 
|type="[]"}
- Falsch
+
+Das Gesamtsystem erfüllt die Nyquistbedingung.
+ Richtig
+
-Der Crestfaktor ist &nbsp;$C_{\rm S} = 1$.
 +
+Das Empfangsfilter &nbsp;$H_{\rm E}(f)$&nbsp; ist an den Sendegrundimpuls &nbsp;$G_{s}(f)$&nbsp; angepasst.
  
 
+
{Welche Bitfehlerwahrscheinlichkeit ergibt sich,&nbsp; wenn für die Leistungsdichte des AWGN–Rauschens &nbsp;$N_{0} = 8 \cdot 10^{–8}\ \rm V^{2}/Hz$&nbsp; $($bezogen auf &nbsp;$1 Ω)$&nbsp; gilt?
{Input-Box Frage
 
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$p_{\rm B} \ = \ ${ 0.287 3% } $\ \cdot 10^{-6}$
  
  
Zeile 25: Zeile 67:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;
+
'''(1)'''&nbsp; Mit den Funktionen&nbsp; $G_{s}(f)$&nbsp; und&nbsp; $H_{\rm E}(f)$&nbsp; gilt für das Spektrum des Detektionsgrundimpulses für&nbsp; $|f| \leq f_{2}$:
'''(2)'''&nbsp;
+
:$$G_d(f)  =  G_s(f) \cdot H_{\rm E}(f) = A \cdot \cos^2 \left( \frac {\pi \cdot f}{2 \cdot f_2} \right).$$
'''(3)'''&nbsp;
+
*Nach der allgemeinen Definition des Cosinus–Rolloff–Spektrums ergeben sich die Eckfrequenzen&nbsp; $f_{1} = 0$&nbsp; und&nbsp; $f_{2} = 1\ \rm MHz$.
'''(4)'''&nbsp;
+
* Daraus folgt für die Nyquistfrequenz&nbsp; (Symmetriepunkt bezüglich des Flankenabfalls):
'''(5)'''&nbsp;
+
:$$f_{\rm Nyq} =  \frac{f_1 +f_2 }
'''(6)'''&nbsp;
+
{2 } \hspace{0.1cm}\underline { = 0.5\,{\rm MHz}}\hspace{0.05cm}.$$
 +
*Der Rolloff–Faktor beträgt
 +
:$$r = \frac{f_2 -f_1 } {f_2 +f_1 } \hspace{0.1cm}\underline {= 1} \hspace{0.05cm}.$$
 +
*Das bedeutet: &nbsp; $G_{d}(f)$&nbsp; beschreibt ein&nbsp; $\cos^{2}$–Spektrum.
 +
 
 +
 
 +
 
 +
'''(2)'''&nbsp; Der Zusammenhang zwischen Nyquistfrequenz und Symboldauer&nbsp; $T$&nbsp; lautet:&nbsp; $f_{\rm Nyq} = 1/(2T)$.
 +
*Daraus folgt für die Bitrate&nbsp; $R = 1/T = 2 \cdot f_{\rm Nyq}\ \underline{= 1 \ \rm Mbit/s}$.
 +
*Beachten Sie die unterschiedlichen Einheiten für Frequenz und Bitrate.
 +
 
 +
 
 +
 
 +
'''(3)'''&nbsp; Die&nbsp; <u>erste und die dritte Lösungsalternative</u>&nbsp; sind zutreffend:
 +
*Es handelt es sich um ein optimales Binärsystem unter der Nebenbedingung der Leistungsbegrenzung.
 +
*Der Crestfaktor ist bei Leistungsbegrenzung nicht von Bedeutung.&nbsp; Bei den hier gegebenen Voraussetzungen würde&nbsp; $C_{\rm S} > 1$ gelten.
 +
 
 +
 
 +
 
 +
'''(4)'''&nbsp; Die Bitfehlerwahrscheinlichkeit eines optimalen Systems kann wie folgt berechnet werden:
 +
:$$p_{\rm B} =  {\rm Q} \left( \sqrt{{2 \cdot E_{\rm B}}/{N_0}}\right)\hspace{0.05cm}.$$
 +
*Im vorliegenden Beispiel erhält man für die mittlere Energie pro Bit:
 +
:$$E_{\rm B}  = \
 +
\int_{-\infty}^{+\infty}|G_s(f)|^2 \,{\rm d} f  =
 +
A^2 \cdot \int_{-1/T}^{+1/T} H_{\rm Nyq}(f) \,{\rm d} f
 +
  = \ \frac {A^2}{T} = \frac {(10^{-6}\,{\rm V/Hz})^2}{10^{-6}\,{\rm s}} = 10^{-6}\,{\rm V^2s}\hspace{0.05cm}.$$
 +
*Mit&nbsp; $N_{0} = 8 \cdot 10^{–8} \ \rm V^{2}/Hz$&nbsp; ergibt sich daraus weiter:
 +
:$$p_{\rm B} =  {\rm Q} \left( \sqrt{\frac{2 \cdot 10^{-6}\,{\rm V^2s}}{8 \cdot 10^{-8}\,{\rm
 +
V^2/Hz}}}\right)=
 +
  {\rm Q} \left( \sqrt{25}\right)= {\rm Q} (5) \hspace{0.1cm}\underline {= 0.287 \cdot 10^{-6}}\hspace{0.05cm}.$$
 +
 
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Aktuelle Version vom 4. Mai 2022, 10:59 Uhr


Cosinus-Spektrum  (Sender & Empfänger)

Die nebenstehende Grafik zeigt

  • das Spektrum  $G_{s}(f)$  des Sendegrundimpulses,
  • den Frequenzgang  $H_{\rm E}(f)$  des Empfangsfilters


eines binären und bipolaren Übertragungssystems,  die zueinander formgleich sind:

$$G_s(f) = \left\{ \begin{array}{c} A \cdot \cos \left( \frac {\pi \cdot f}{2 \cdot f_2} \right) \\ \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{f\ddot{u}r}}\\ \\ \\ \end{array} \begin{array}{*{20}c}|f| \le f_2 \hspace{0.05cm}, \\ \\ {\rm sonst }\hspace{0.05cm}, \\ \end{array}$$
$$H_{\rm E }(f) = \left\{ \begin{array}{c} 1 \cdot \cos \left( \frac {\pi \cdot f}{2 \cdot f_2} \right) \\ \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{f\ddot{u}r}}\\ \\ \\ \end{array} \begin{array}{*{20}c}|f| \le f_2 \hspace{0.05cm}, \\ \\ {\rm sonst }\hspace{0.05cm}. \\ \end{array}$$

In der gesamten Aufgabe gelte   $A = 10^{–6} \ \rm V/Hz$  und  $f_{2} = 1 \ \rm MHz$.

  • Unter der Voraussetzung,  dass die Bitrate  $R = 1/T$  richtig gewählt wird,  erfüllt der Detektionsgrundimpuls  $g_{d}(t) = g_{s}(t) ∗ h_{\rm E}(t)$  das erste Nyquistkriterium.
  • Bei der dazugehörigen Spektralfunktion  $G_{d}(f)$  erfolgt dabei der Flankenabfall cosinusförmig ähnlich einem Cosinus–Rolloff–Spektrum.
  • Der Rolloff–Faktor  $r$  ist in dieser Aufgabe zu ermitteln.



Hinweise:

  • Der Crestfaktor ist der Qotient aus Maximalwert und Effektivwert des Sendesignals und damit ein Maß für die sendeseitigen Impulsinterferenzen:
$$C_{\rm S} = \frac{s_0}{\sqrt{E_{\rm B}/T}} = \frac{{\rm Max}[s(t)]}{\sqrt{{\rm E}[s^2(t)]}}= {s_0}/{s_{\rm eff}}.$$


Fragebogen

1

Berechnen Sie das Nyquistspektrum  $G_{d}(f)$.  Wie groß sind die Nyquistfrequenz und der Rolloff–Faktor?

$f_{\rm Nyq} \ = \ $

$\ \rm MHz$
$r \ = \ $

2

Wie groß ist die Bitrate des vorliegenden Nyquistsystems?

$R \ = \ $

$\ \rm Mbit/s$

3

Warum handelt es sich unter der Nebenbedingung „Leistungsbegrenzung” um ein optimales System?

Das Gesamtsystem erfüllt die Nyquistbedingung.
Der Crestfaktor ist  $C_{\rm S} = 1$.
Das Empfangsfilter  $H_{\rm E}(f)$  ist an den Sendegrundimpuls  $G_{s}(f)$  angepasst.

4

Welche Bitfehlerwahrscheinlichkeit ergibt sich,  wenn für die Leistungsdichte des AWGN–Rauschens  $N_{0} = 8 \cdot 10^{–8}\ \rm V^{2}/Hz$  $($bezogen auf  $1 Ω)$  gilt?

$p_{\rm B} \ = \ $

$\ \cdot 10^{-6}$


Musterlösung

(1)  Mit den Funktionen  $G_{s}(f)$  und  $H_{\rm E}(f)$  gilt für das Spektrum des Detektionsgrundimpulses für  $|f| \leq f_{2}$:

$$G_d(f) = G_s(f) \cdot H_{\rm E}(f) = A \cdot \cos^2 \left( \frac {\pi \cdot f}{2 \cdot f_2} \right).$$
  • Nach der allgemeinen Definition des Cosinus–Rolloff–Spektrums ergeben sich die Eckfrequenzen  $f_{1} = 0$  und  $f_{2} = 1\ \rm MHz$.
  • Daraus folgt für die Nyquistfrequenz  (Symmetriepunkt bezüglich des Flankenabfalls):
$$f_{\rm Nyq} = \frac{f_1 +f_2 } {2 } \hspace{0.1cm}\underline { = 0.5\,{\rm MHz}}\hspace{0.05cm}.$$
  • Der Rolloff–Faktor beträgt
$$r = \frac{f_2 -f_1 } {f_2 +f_1 } \hspace{0.1cm}\underline {= 1} \hspace{0.05cm}.$$
  • Das bedeutet:   $G_{d}(f)$  beschreibt ein  $\cos^{2}$–Spektrum.


(2)  Der Zusammenhang zwischen Nyquistfrequenz und Symboldauer  $T$  lautet:  $f_{\rm Nyq} = 1/(2T)$.

  • Daraus folgt für die Bitrate  $R = 1/T = 2 \cdot f_{\rm Nyq}\ \underline{= 1 \ \rm Mbit/s}$.
  • Beachten Sie die unterschiedlichen Einheiten für Frequenz und Bitrate.


(3)  Die  erste und die dritte Lösungsalternative  sind zutreffend:

  • Es handelt es sich um ein optimales Binärsystem unter der Nebenbedingung der Leistungsbegrenzung.
  • Der Crestfaktor ist bei Leistungsbegrenzung nicht von Bedeutung.  Bei den hier gegebenen Voraussetzungen würde  $C_{\rm S} > 1$ gelten.


(4)  Die Bitfehlerwahrscheinlichkeit eines optimalen Systems kann wie folgt berechnet werden:

$$p_{\rm B} = {\rm Q} \left( \sqrt{{2 \cdot E_{\rm B}}/{N_0}}\right)\hspace{0.05cm}.$$
  • Im vorliegenden Beispiel erhält man für die mittlere Energie pro Bit:
$$E_{\rm B} = \ \int_{-\infty}^{+\infty}|G_s(f)|^2 \,{\rm d} f = A^2 \cdot \int_{-1/T}^{+1/T} H_{\rm Nyq}(f) \,{\rm d} f = \ \frac {A^2}{T} = \frac {(10^{-6}\,{\rm V/Hz})^2}{10^{-6}\,{\rm s}} = 10^{-6}\,{\rm V^2s}\hspace{0.05cm}.$$
  • Mit  $N_{0} = 8 \cdot 10^{–8} \ \rm V^{2}/Hz$  ergibt sich daraus weiter:
$$p_{\rm B} = {\rm Q} \left( \sqrt{\frac{2 \cdot 10^{-6}\,{\rm V^2s}}{8 \cdot 10^{-8}\,{\rm V^2/Hz}}}\right)= {\rm Q} \left( \sqrt{25}\right)= {\rm Q} (5) \hspace{0.1cm}\underline {= 0.287 \cdot 10^{-6}}\hspace{0.05cm}.$$