Aufgaben:Aufgabe 1.6: Übergangswahrscheinlichkeiten: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:P_ID451__Sto_A_1_6.png|right|frame|20 Realisierungen der betrachteten Markovkette]]
+
[[Datei:P_ID451__Sto_A_1_6.png|right|frame|$20$  Realisierungen der betrachteten Markovkette]]
Rechts sehen Sie 20 Realisierungen einer binären homogenen Markovkette erster Ordnung mit den Ereignissen $A$ und $B$:  
+
Rechts sehen Sie  $20$  Realisierungen einer binären homogenen Markovkette erster Ordnung mit den Ereignissen  $A$  und  $B$:  
*Man erkennt bereits aus dieser Darstellung, dass zu Beginn ($ν = 0$) das Ereignis $A$ überwiegt.  
+
*Man erkennt bereits aus dieser Darstellung, dass zu Beginn  $(ν = 0)$  das Ereignis  $A$  überwiegt.  
*Zu späteren Zeitpunkten – etwa ab $ν = 4$ – tritt jedoch etwas häufiger das Ereignis $B$ auf.
+
*Zu späteren Zeitpunkten – etwa ab  $ν = 4$  – tritt jedoch etwas häufiger das Ereignis  $B$  auf.
  
  
Zeile 14: Zeile 14:
  
 
Diese empirischen Zahlenwerte sollen herangezogen werden, um die Parameter (Übergangswahrscheinlichkeiten) der Markovkette (näherungsweise) zu ermitteln.
 
Diese empirischen Zahlenwerte sollen herangezogen werden, um die Parameter (Übergangswahrscheinlichkeiten) der Markovkette (näherungsweise) zu ermitteln.
 +
 +
 +
 +
  
  
 
''Hinweise:''  
 
''Hinweise:''  
*Die Aufgabe gehört zum  Kapitel [[Stochastische_Signaltheorie/Markovketten|Markovketten]].
+
*Die Aufgabe gehört zum  Kapitel  [[Stochastische_Signaltheorie/Markovketten|Markovketten]].
 
   
 
   
*Sie können Ihre Ergebnisse mit dem interaktiven Applet [[Applets:Markovketten|Ereigniswahrscheinlichkeiten einer Markovkette 1. Ordnung]] überprüfen.
+
*Sie können Ihre Ergebnisse mit dem interaktiven Applet  [[Applets:Markovketten|Ereigniswahrscheinlichkeiten einer Markovkette 1. Ordnung]]  überprüfen.
  
  
Zeile 26: Zeile 30:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welche Wahrscheinlichkeiten ergeben sich zu den Zeiten $ν = 0$, $ν = 1$ und $ν = 9$, wenn man nur die 20 dargestellten Realisierungen berücksichtigt?
+
{Welche Wahrscheinlichkeiten ergeben sich zu den Zeiten&nbsp; $ν = 0$,&nbsp; $ν = 1$&nbsp; und&nbsp; $ν = 9$, wenn man nur die&nbsp; $20$&nbsp; dargestellten Realisierungen berücksichtigt?
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(A_{\nu \hspace{0.05cm} = \hspace{0.05cm}0}) \ = \ $  { 0.85 3% }
 
${\rm Pr}(A_{\nu \hspace{0.05cm} = \hspace{0.05cm}0}) \ = \ $  { 0.85 3% }
Zeile 34: Zeile 38:
 
{Welche der Aussagen sind aufgrund der Musterfolgen zutreffend?
 
{Welche der Aussagen sind aufgrund der Musterfolgen zutreffend?
 
|type="[]"}
 
|type="[]"}
+ Nach $A$ ist $B$ wahrscheinlicher als $A$.
+
+ Nach&nbsp; $A$&nbsp; ist&nbsp; $B$&nbsp; wahrscheinlicher als&nbsp; $A$.
+ Sowohl nach $A$ als auch nach $B$ kann wieder $A$ oder $B$ folgen.
+
+ Sowohl nach&nbsp; $A$&nbsp; als auch nach&nbsp; $B$&nbsp; kann wieder&nbsp; $A$&nbsp; oder&nbsp; $B$&nbsp; folgen.
 
- Die Folge &bdquo;$B\hspace{-0.05cm}-\hspace{-0.05cm}B \hspace{-0.05cm}-\hspace{-0.05cm}B\hspace{-0.05cm}-\hspace{-0.05cm}B\hspace{-0.05cm}-\hspace{-0.05cm}\text{...}$&rdquo; ist nicht möglich.
 
- Die Folge &bdquo;$B\hspace{-0.05cm}-\hspace{-0.05cm}B \hspace{-0.05cm}-\hspace{-0.05cm}B\hspace{-0.05cm}-\hspace{-0.05cm}B\hspace{-0.05cm}-\hspace{-0.05cm}\text{...}$&rdquo; ist nicht möglich.
  
{Berechnen Sie alle Übergangswahrscheinlichkeiten der Markovkette. Wie groß sind insbesondere ${\rm Pr}(A\hspace{0.05cm} | \hspace{0.05cm}A)$ und ${\rm Pr}(B\hspace{0.05cm} | \hspace{0.05cm}B)$?
+
{Berechnen Sie alle Übergangswahrscheinlichkeiten der Markovkette. Wie groß sind insbesondere&nbsp; ${\rm Pr}(A\hspace{0.05cm} | \hspace{0.05cm}A)$&nbsp; und&nbsp; ${\rm Pr}(B\hspace{0.05cm} | \hspace{0.05cm}B)$?
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(A\hspace{0.05cm} | \hspace{0.05cm}A) \ = \ $ { 0.1 3% }
 
${\rm Pr}(A\hspace{0.05cm} | \hspace{0.05cm}A) \ = \ $ { 0.1 3% }
 
${\rm Pr}(B\hspace{0.05cm} | \hspace{0.05cm}B) \ = \ $ { 0.4 3% }
 
${\rm Pr}(B\hspace{0.05cm} | \hspace{0.05cm}B) \ = \ $ { 0.4 3% }
  
{Wie groß ist die Wahrscheinlichkeit, dass die ersten zehn Elemente der Folge jeweils $B$ sind?
+
{Wie groß ist die Wahrscheinlichkeit, dass die ersten zehn Elemente der Folge jeweils&nbsp; $B$&nbsp; sind?
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(B_0, \hspace{0.05cm}\text{...}\hspace{0.05cm} , B_9)\ = \ $ { 2.62 3% } $\ \cdot  10^{-5}$
 
${\rm Pr}(B_0, \hspace{0.05cm}\text{...}\hspace{0.05cm} , B_9)\ = \ $ { 2.62 3% } $\ \cdot  10^{-5}$
  
  
{Wie groß ist die Wahrscheinlichkeit, dass sehr lange nach Einschalten der Kette die Zeichenfolge &bdquo;$A\hspace{-0.05cm}-\hspace{-0.05cm}B \hspace{-0.05cm}-\hspace{-0.05cm}B\hspace{-0.05cm}-\hspace{-0.05cm}A$&rdquo; erzeugt wird?
+
{Wie groß ist die Wahrscheinlichkeit, dass sehr lange nach Einschalten der Kette die Zeichenfolge&nbsp; &bdquo;$A\hspace{-0.05cm}-\hspace{-0.05cm}B \hspace{-0.05cm}-\hspace{-0.05cm}B\hspace{-0.05cm}-\hspace{-0.05cm}A$&rdquo;&nbsp; erzeugt wird?
 
|type="{}"}
 
|type="{}"}
 
${\rm Pr}(A\hspace{-0.05cm}-\hspace{-0.05cm}B \hspace{-0.05cm}-\hspace{-0.05cm}B\hspace{-0.05cm}-\hspace{-0.05cm}A)\ = \ $ { 8.64 3% } $\ \%$
 
${\rm Pr}(A\hspace{-0.05cm}-\hspace{-0.05cm}B \hspace{-0.05cm}-\hspace{-0.05cm}B\hspace{-0.05cm}-\hspace{-0.05cm}A)\ = \ $ { 8.64 3% } $\ \%$

Version vom 12. November 2019, 14:27 Uhr

$20$  Realisierungen der betrachteten Markovkette

Rechts sehen Sie  $20$  Realisierungen einer binären homogenen Markovkette erster Ordnung mit den Ereignissen  $A$  und  $B$:

  • Man erkennt bereits aus dieser Darstellung, dass zu Beginn  $(ν = 0)$  das Ereignis  $A$  überwiegt.
  • Zu späteren Zeitpunkten – etwa ab  $ν = 4$  – tritt jedoch etwas häufiger das Ereignis  $B$  auf.


Durch Mittelung über Millionen von Realisierungen wurden einige Ereigniswahrscheinlichkeiten numerisch ermittelt:

$${\rm Pr}(A_{\nu \hspace{0.05cm} = \hspace{0.05cm}0}) \approx 0.9, \hspace{0.3cm}{\rm Pr}(A_{\nu \hspace{0.05cm} = \hspace{0.05cm}1}) \approx 0.15, \hspace{0.3cm} {\rm Pr}(A_{\nu \hspace{0.05cm} > \hspace{0.05cm}4}) \approx 0.4.$$

Diese empirischen Zahlenwerte sollen herangezogen werden, um die Parameter (Übergangswahrscheinlichkeiten) der Markovkette (näherungsweise) zu ermitteln.




Hinweise:


Fragebogen

1

Welche Wahrscheinlichkeiten ergeben sich zu den Zeiten  $ν = 0$,  $ν = 1$  und  $ν = 9$, wenn man nur die  $20$  dargestellten Realisierungen berücksichtigt?

${\rm Pr}(A_{\nu \hspace{0.05cm} = \hspace{0.05cm}0}) \ = \ $

${\rm Pr}(A_{\nu \hspace{0.05cm} = \hspace{0.05cm}1}) \ = \ $

${\rm Pr}(A_{\nu \hspace{0.05cm} = \hspace{0.05cm}9}) \ = \ $

2

Welche der Aussagen sind aufgrund der Musterfolgen zutreffend?

Nach  $A$  ist  $B$  wahrscheinlicher als  $A$.
Sowohl nach  $A$  als auch nach  $B$  kann wieder  $A$  oder  $B$  folgen.
Die Folge „$B\hspace{-0.05cm}-\hspace{-0.05cm}B \hspace{-0.05cm}-\hspace{-0.05cm}B\hspace{-0.05cm}-\hspace{-0.05cm}B\hspace{-0.05cm}-\hspace{-0.05cm}\text{...}$” ist nicht möglich.

3

Berechnen Sie alle Übergangswahrscheinlichkeiten der Markovkette. Wie groß sind insbesondere  ${\rm Pr}(A\hspace{0.05cm} | \hspace{0.05cm}A)$  und  ${\rm Pr}(B\hspace{0.05cm} | \hspace{0.05cm}B)$?

${\rm Pr}(A\hspace{0.05cm} | \hspace{0.05cm}A) \ = \ $

${\rm Pr}(B\hspace{0.05cm} | \hspace{0.05cm}B) \ = \ $

4

Wie groß ist die Wahrscheinlichkeit, dass die ersten zehn Elemente der Folge jeweils  $B$  sind?

${\rm Pr}(B_0, \hspace{0.05cm}\text{...}\hspace{0.05cm} , B_9)\ = \ $

$\ \cdot 10^{-5}$

5

Wie groß ist die Wahrscheinlichkeit, dass sehr lange nach Einschalten der Kette die Zeichenfolge  „$A\hspace{-0.05cm}-\hspace{-0.05cm}B \hspace{-0.05cm}-\hspace{-0.05cm}B\hspace{-0.05cm}-\hspace{-0.05cm}A$”  erzeugt wird?

${\rm Pr}(A\hspace{-0.05cm}-\hspace{-0.05cm}B \hspace{-0.05cm}-\hspace{-0.05cm}B\hspace{-0.05cm}-\hspace{-0.05cm}A)\ = \ $

$\ \%$


Musterlösung

(1)  Die entsprechenden Wahrscheinlichkeiten sind:

$${\rm Pr}(A_\text{v=0}) = 17/20 \;\underline{= 0.85}, \hspace{0.2cm} {\rm Pr}(A_\text{v=1}) = 2/20 \;\underline{= 0.10}, \hspace{0.2cm} {\rm Pr}(A_\text{v=9}) = 8/20 \;\underline{= 0.840}.$$

(2)  Richtig sind die Lösungsvorschläge 1 und 2:

  • Nach $A$ folgt $B$ sehr viel häufiger als $A$, das heißt, es wird sicher ${\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}A) > {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm}A)$ sein.
  • Alle vier Übergänge zwischen den zwei Ereignissen $A$ und $B$ sind möglich. Daraus folgt weiter, dass alle vier Übergangswahrscheinlichkeiten $\ne 0$ sein werden.
  • Wegen ${\rm Pr}(B_\text{v=0}) \ne 0$ und ${\rm Pr}(B \hspace{0.05cm} | \hspace{0.05cm}B) \ne 0$ kann natürlich auch die Folge „$B\hspace{-0.05cm}-\hspace{-0.05cm}B \hspace{-0.05cm}-\hspace{-0.05cm}B\hspace{-0.05cm}-\hspace{-0.05cm}B\hspace{-0.05cm}-\hspace{0.15cm}...$” erzeugt werden, auch wenn diese bei den 20 hier ausgegebenen Markovketten nicht dabei ist.


(3)  Bei einer Markovkette erster Ordnung gilt mit den Abkürzungen ${\rm Pr}(A_0) = {\rm Pr}(A_\text{v=0})$ und ${\rm Pr}(A_1) = {\rm Pr}(A_\text{v=1})$:

$${\rm Pr}(A_1) = {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} A) \cdot {\rm Pr}(A_0) \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} B) \cdot {\rm Pr}(B_0).$$

Die ergodischen Wahrscheinlichkeiten sind ${\rm Pr}(A) = {\rm Pr}(A_{\nu \hspace{0.05cm} > \hspace{0.05cm}4}) = 0.4$ und ${\rm Pr}(B) = {\rm Pr}(B_{\nu \hspace{0.05cm} > \hspace{0.05cm}4}) = 0.6$. Zwischen diesen besteht folgender Zusammenhang:

$${\rm Pr}(A) = {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} A) \cdot {\rm Pr}(A) \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} B) \cdot {\rm Pr}(B).$$

Mit den angegebenen Zahlenwerten erhält man aus diesen letzten beiden Gleichungen:

$$0.15 = {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} A) \cdot 0.90 \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} B) \cdot 0.10 ,$$
$$0.40 = {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} A) \cdot 0.40 \hspace{0.1cm} + \hspace{0.1cm} {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} B) \cdot 0.60 .$$

Multipliziert man die erste Gleichung mit $6$ und subtrahiert davon die zweite, so ergibt sich:

$$0.5 = 5 \cdot {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} A) \hspace{0.15cm} \Rightarrow \hspace{0.15cm} {\rm Pr}(A \hspace{0.05cm} | \hspace{0.05cm} A) \hspace{0.15cm}\underline {= 0.1}.$$

Setzt man dieses Ergebnis in eine der oberen Gleichungen ein, so erhält man $ {\rm Pr}(A\hspace{0.05cm}|\hspace{0.05cm}B) = 0.6$. Die weiteren Wahrscheinlichkeiten sind:

$${\rm Pr}(B\hspace{0.05cm}|\hspace{0.05cm}A) = 1 - {\rm Pr}(A\hspace{0.05cm}|\hspace{0.05cm}A) = 0.9, \hspace{0.3cm} {\rm Pr}(B\hspace{0.05cm}|\hspace{0.05cm}B) = 1 - {\rm Pr}(A\hspace{0.05cm}|\hspace{0.05cm}B)\ \underline{= 0.4}.$$

(4)  Dieser Fall ist nur dann möglich, wenn die Markovkette mit $B$ beginnt und danach neunmal ein Übergang von $B$ nach $B$ stattfindet:

$${\rm Pr}(B_0,\hspace{0.05cm}\text{...} \hspace{0.05cm}, B_{9}) = {\rm Pr}(B_0) \cdot {\rm Pr}(B\hspace{0.05cm}| \hspace{0.05cm} B)^9 = {\rm 0.1} \cdot {\rm 0.4}^9 \hspace{0.15cm}\underline {\approx 2.62 \cdot 10^{-5}}. $$

(5)  Hier muss von der ergodischen Wahrscheinlichkeit ${\rm Pr}(A)$ ausgegangen werden und man erhält:

$${\rm Pr}(A_{\nu}, \hspace{0.05cm}B_{\nu +1}, \hspace{0.05cm}B_{\nu +2},\hspace{0.05cm} A_{\nu +3}) = {\rm Pr}(A) \hspace{0.01cm}\cdot \hspace{0.01cm}{\rm Pr}(B\hspace{0.05cm}| \hspace{0.05cm} A) \hspace{0.01cm}\cdot\hspace{0.01cm} {\rm Pr}(B\hspace{0.05cm}| \hspace{0.05cm} B)\hspace{0.01cm}\cdot \hspace{0.01cm}{\rm Pr}(A\hspace{0.05cm}| \hspace{0.05cm} B)\hspace{0.15cm}\underline {\approx 8.64 \% }.$$