Aufgaben:Aufgabe 1.5Z: si-förmige Impulsantwort: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 10: Zeile 10:
 
\cdot t ) .$$
 
\cdot t ) .$$
 
Die Lösung kann entweder im Zeitbereich oder auch im Frequenzbereich gefunden werden. In der Musterlösung werden jeweils beide Lösungswege angegeben.
 
Die Lösung kann entweder im Zeitbereich oder auch im Frequenzbereich gefunden werden. In der Musterlösung werden jeweils beide Lösungswege angegeben.
 +
 
'''Hinweis:''' Diese Aufgabe bezieht sich auf die theoretischen Grundlagen von [[Lineare_zeitinvariante_Systeme/Einige_systemtheoretische_Tiefpassfunktionen|Kapitel 1.3]]. Gegeben ist dazu das folgende bestimmte Integral:
 
'''Hinweis:''' Diese Aufgabe bezieht sich auf die theoretischen Grundlagen von [[Lineare_zeitinvariante_Systeme/Einige_systemtheoretische_Tiefpassfunktionen|Kapitel 1.3]]. Gegeben ist dazu das folgende bestimmte Integral:
 
$$\int_{ 0 }^{ \infty } \frac{\sin(u) \cdot \cos(a \cdot u)}{u}  \hspace{0.15cm}{\rm
 
$$\int_{ 0 }^{ \infty } \frac{\sin(u) \cdot \cos(a \cdot u)}{u}  \hspace{0.15cm}{\rm

Version vom 3. August 2016, 19:56 Uhr

si–förmige Impulsantwort (Aufgabe Z1.5)

Die Impulsantwort eines linearen zeitinvarianten (und akausalen) Systems wurde wie folgt ermittelt (siehe Grafik): $$h(t) = 500\hspace{0.05cm}\frac{1}{ {\rm s}}\cdot{\rm si}(\pi \cdot \frac{t}{ 1\hspace{0.1cm}{\rm ms}}) .$$ Berechnet werden sollen die Ausgangssignale $y(t)$, wenn am Eingang verschiedene Cosinusschwingungen unterschiedlicher Frequenz $f_0$ angelegt werden: $$x(t) = 4\hspace{0.05cm}{\rm V}\cdot {\rm cos}(2\pi \cdot f_0 \cdot t ) .$$ Die Lösung kann entweder im Zeitbereich oder auch im Frequenzbereich gefunden werden. In der Musterlösung werden jeweils beide Lösungswege angegeben.

Hinweis: Diese Aufgabe bezieht sich auf die theoretischen Grundlagen von Kapitel 1.3. Gegeben ist dazu das folgende bestimmte Integral: $$\int_{ 0 }^{ \infty } \frac{\sin(u) \cdot \cos(a \cdot u)}{u} \hspace{0.15cm}{\rm d}u = \left\{ \begin{array}{c} \pi/2 \\ \pi/4 \\ 0 \\ \end{array} \right.\quad \quad \begin{array}{c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c}{ |a| < 1,} \\{ |a| = 1,} \\ { |a| > 1.} \\ \end{array}$$


Fragebogen

1

Berechnen Sie den Frequenzgang $H(f)$ des LZI-Systems. Wie groß sind die äquivalente Bandbreite und der Gleichsignalübertragungsfaktor?

$\Delta f =$

kHz
$H(f = 0) =$

2

Berechnen Sie das Ausgangssignal $y(t)$ bei cosinusförmigem Eingang mit der Frequenz $f_0 =$ 1 kHz. Wie groß ist der Signalwert zur Zeit $t =$ 0?

$f_0 = 1 {\rm kHz}: y(t = 0) =$

V

3

Berechnen Sie das Ausgangssignal $y(t)$ bei cosinusförmigem Eingang mit der Frequenz $f_0 =$ 0.1 kHz. Wie groß ist der Signalwert zur Zeit $t =$ 0?

$f_0 = 0.1 {\rm kHz}: y(t = 0) =$

V

4

Berechnen Sie das Ausgangssignal $y(t)$ bei cosinusförmigem Eingang mit der Frequenz $f_0 =$ 0.5 kHz. Wie groß ist der Signalwert zur Zeit $t =$ 0?

$f_0 = 0.5 {\rm kHz}: y(t = 0) =$

V


Musterlösung

1. Ein Vergleich mit den Gleichungen in Abschnitt 2 von Kapitel 1.3 – oder auch die Anwendung der Fourierrücktransformation – zeigt, dass $H(f)$ ein idealer Tiefpass ist: $$H(f) = \left\{ \begin{array}{c} \hspace{0.25cm}K \\ K/2 \\ 0 \\ \end{array} \right.\quad \quad \begin{array}{*{10}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.005cm} f\hspace{0.05cm} \right| < \Delta f/2,} \\ {\left| \hspace{0.005cm}f\hspace{0.05cm} \right| = \Delta f/2,} \\ {\left|\hspace{0.005cm} f \hspace{0.05cm} \right| > \Delta f/2.} \\ \end{array}$$ Die äquidistanten Nulldurchgänge der Impulsantwort treten im Abstand $Δt =$ 1 ms auf. Daraus folgt die äquivalente Bandbreite $Δf \rm \underline{ = 1 kHz}$. Wäre $K =$ 1, so müsste $h(0) = Δf =$ 1000 1/s gelten. Wegen der Angabe $h(0) = 500 \hspace{0.05cm} 1/s = Δf/2$ ist somit der Gleichsignalübertragungsfaktor $K = H(f = 0) \rm \underline{= 0.5}$.


2. Diese Aufgabe lässt sich am einfachsten im Spektralbereich lösen. Für das Ausgangsspektrum gilt: $$Y(f) = X(f)\cdot H(f) .$$ $X(f)$ besteht aus zwei Diracfunktionen bei $± f_0$, jeweils mit Gewicht $A_x/2 =$ 2 V. Bei $f = f_0 =$ 1 kHz > $Δf$/2 ist aber $H(f) =$ 0, so dass $Y(f) =$ 0 und damit auch $y(t) =$ 0 ist ⇒ $\underline{y(t = 0) = 0}$. Die Lösung im Zeitbereich basiert auf der Faltung: $$y(t) = x (t) * h (t) = \int\limits_{ - \infty }^{ + \infty } {h ( \tau )} \cdot x ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$ Zum Zeitpunkt $t =$ 0 erhält man unter Berücksichtigung der Symmetrie der Cosinusfunktion: $$y(t = 0 ) = \frac{A_x \cdot \Delta f}{2} \cdot \int\limits_{ - \infty }^{ + \infty } {\rm si} ( \pi \cdot \Delta f \cdot \tau ) \cdot {\rm cos}(2\pi \cdot f_0 \cdot \tau ) \hspace{0.1cm}{\rm d}\tau.$$ Mit der Substitution $u = π · Δf · τ$ kann hierfür auch geschrieben werden: $$y(t = 0 ) = \frac{A_x }{\pi} \cdot \int\limits_{ 0 }^{ \infty } \frac{\sin(u) \cdot \cos(a \cdot u)}{u} \hspace{0.15cm}{\rm d}u .$$ Hierbei ist die Konstante $a = 2f_0/Δf =$ 2. Mit diesem Wert liefert das angegebene Integral den Wert 0: $$y(t = 0 ) = {A_y } = 0.$$


3. Der Frequenzgang bei $f = f_0 =$ 100 Hz ist nach den Berechnungen zu Punkt a) gleich $K =$ 0.5. Deshalb ergibt sich $A_y = A_x/2 =$ 2 V. Zum gleichen Ergebnis kommt man über die Faltung entsprechend obiger Gleichung. Für $a = 2f_0/Δf =$ 0.2 ist das Integral gleich $π/2$ und man erhält $$y(t = 0 ) = {A_y } = \frac{A_x}{\pi} \cdot \frac{\pi}{2} = \frac{A_x}{2} \hspace{0.15cm}\underline{= 2\,{\rm V}}.$$


4. Genau bei $f =$ 0.5 kHz ist der Übergang vom Durchlass– zum Sperrbereich und es gilt für diese singuläre Stelle: $H(f = f_0) = K/2$. Somit ist die Amplitude des Ausgangssignals nur halb so groß wie unter c) berechnet, nämlich $A_y \underline{= 1 V}$. Zum gleichen Ergebnis kommt man mit $a = 2f_0/Δf =$ 1 über die Faltung.