Aufgaben:Aufgabe 1.5Z: si-förmige Impulsantwort: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 58: Zeile 58:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  Ein Vergleich mit den Gleichungen auf der Seite [[Lineare_zeitinvariante_Systeme/Einige_systemtheoretische_Tiefpassfunktionen#Idealer_Tiefpass_.E2.80.93_K.C3.BCpfm.C3.BCller.E2.80.93Tiefpass|Idealer Tiefpass]], oder auch die Anwendung der [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_zweite_Fourierintegral|Fourierrücktransformation]] zeigt, dass $H(f)$ ein idealer Tiefpass ist:
+
'''(1)'''  Ein Vergleich mit den Gleichungen auf der Seite  [[Lineare_zeitinvariante_Systeme/Einige_systemtheoretische_Tiefpassfunktionen#Idealer_Tiefpass_.E2.80.93_K.C3.BCpfm.C3.BCller.E2.80.93Tiefpass|Idealer Tiefpass]], oder die Anwendung der  [[Signaldarstellung/Fouriertransformation_und_-rücktransformation#Das_zweite_Fourierintegral|Fourierrücktransformation]]  zeigt, dass  $H(f)$  ein idealer Tiefpass ist:
 
:$$H(f) = \left\{ \begin{array}{c} \hspace{0.25cm}K  \\  K/2 \\ 0 \\  \end{array} \right.\quad \quad \begin{array}{*{10}c}  {\rm{f\ddot{u}r}}  \\ {\rm{f\ddot{u}r}}
 
:$$H(f) = \left\{ \begin{array}{c} \hspace{0.25cm}K  \\  K/2 \\ 0 \\  \end{array} \right.\quad \quad \begin{array}{*{10}c}  {\rm{f\ddot{u}r}}  \\ {\rm{f\ddot{u}r}}
 
\\  {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}
 
\\  {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}c}
Zeile 65: Zeile 65:
 
{\left|\hspace{0.005cm} f \hspace{0.05cm} \right| > \Delta f/2.}  \\
 
{\left|\hspace{0.005cm} f \hspace{0.05cm} \right| > \Delta f/2.}  \\
 
\end{array}$$
 
\end{array}$$
*Die äquidistanten Nulldurchgänge der Impulsantwort treten im Abstand $Δt = 1 \ \rm ms$ auf.  
+
*Die äquidistanten Nulldurchgänge der Impulsantwort treten im Abstand  $Δt = 1 \ \rm ms$  auf.  
*Daraus folgt die äquivalente Bandbreite $Δf \rm \underline{ = 1 \ \rm kHz}$.  
+
*Daraus folgt die äquivalente Bandbreite  $Δf \rm \underline{ = 1 \ \rm kHz}$. 
*Wäre $K = 1$, so müsste $h(0) = Δf = 1000 \cdot \rm 1/s$ gelten.  
+
*Wäre  $K = 1$, so müsste  $h(0) = Δf = 1000 \cdot \rm 1/s$  gelten.  
*Wegen der Angabe $h(0) = 500 \cdot{\rm 1/s} = Δf/2$ ist somit der Gleichsignalübertragungsfaktor $K = H(f = 0) \; \rm \underline{= 0.5}$.
+
*Wegen der Angabe  $h(0) = 500 \cdot{\rm 1/s} = Δf/2$  ist somit der Gleichsignalübertragungsfaktor  $K = H(f = 0) \; \rm \underline{= 0.5}$.
  
  
  
'''(2)'''  Diese Aufgabe lässt sich am einfachsten im Spektralbereich lösen. Für das Ausgangsspektrum gilt:   $Y(f) =  X(f)\cdot H(f) .$
+
'''(2)'''  Diese Aufgabe lässt sich am einfachsten im Spektralbereich lösen.  
*$X(f)$ besteht aus zwei Diracfunktionen bei $± f_0$, jeweils mit Gewicht $A_x/2 =2 \hspace{0.08cm}\rm V$.  
+
*Für das Ausgangsspektrum gilt:   $Y(f) =  X(f)\cdot H(f) .$
*Bei $f = f_0 = 1 \ {\rm kHz} > Δf/2$ ist aber $H(f) = 0$, so dass $Y(f) = 0$ und damit auch $y(t) = 0$ ist     ⇒     $\underline{y(t = 0) = 0}$.
+
*$X(f)$  besteht aus zwei Diracfunktionen bei  $± f_0$, jeweils mit Gewicht  $A_x/2 =2 \hspace{0.08cm}\rm V$.  
 +
*Bei  $f = f_0 = 1 \ {\rm kHz} > Δf/2$  ist aber  $H(f) = 0$, so dass  $Y(f) = 0$  und damit auch  $y(t) = 0$  ist     ⇒     $\underline{y(t = 0) = 0}$.
  
  
Zeile 80: Zeile 81:
 
:$$y(t) = x (t) * h (t) = \int_{ - \infty }^{ + \infty } {h ( \tau  )}  \cdot
 
:$$y(t) = x (t) * h (t) = \int_{ - \infty }^{ + \infty } {h ( \tau  )}  \cdot
 
  x ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$
 
  x ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$
*Zum Zeitpunkt $t = 0$ erhält man unter Berücksichtigung der Symmetrie der Cosinusfunktion:
+
*Zum Zeitpunkt  $t = 0$  erhält man unter Berücksichtigung der Symmetrie der Cosinusfunktion:
 
:$$y(t = 0 ) = \frac{A_x \cdot \Delta f}{2} \cdot \int_{ - \infty }^{ + \infty } {\rm si} ( \pi \cdot \Delta f \cdot \tau  )  \cdot
 
:$$y(t = 0 ) = \frac{A_x \cdot \Delta f}{2} \cdot \int_{ - \infty }^{ + \infty } {\rm si} ( \pi \cdot \Delta f \cdot \tau  )  \cdot
 
  {\rm cos}(2\pi \cdot  f_0
 
  {\rm cos}(2\pi \cdot  f_0
 
\cdot \tau ) \hspace{0.1cm}{\rm d}\tau.$$
 
\cdot \tau ) \hspace{0.1cm}{\rm d}\tau.$$
*Mit der Substitution $u = π · Δf · τ$  kann hierfür auch geschrieben werden:
+
*Mit der Substitution  $u = π · Δf · τ$  kann hierfür auch geschrieben werden:
 
:$$y(t = 0 ) = \frac{A_x }{\pi} \cdot \int_{ 0 }^{ \infty } \frac{\sin(u) \cdot \cos(a \cdot u)}{u}  \hspace{0.15cm}{\rm d}u .$$
 
:$$y(t = 0 ) = \frac{A_x }{\pi} \cdot \int_{ 0 }^{ \infty } \frac{\sin(u) \cdot \cos(a \cdot u)}{u}  \hspace{0.15cm}{\rm d}u .$$
Hierbei ist die Konstante $a = 2f_0/Δf = 2$. Mit diesem Wert liefert das angegebene Integral den Wert 0:   $y(t = 0 ) = {A_y } = 0.$
+
*Hierbei ist die Konstante  $a = 2f_0/Δf = 2$. Mit diesem Wert liefert das angegebene Integral den Wert Null:   $y(t = 0 ) = {A_y } = 0.$
  
  
'''(3)'''  Der Frequenzgang hat bei $f = f_0 = 100 \ \rm Hz$ nach den Berechnungen zur Teilaufgabe '''(1)''' den Wert $K = 0.5$. Deshalb ergibt sich  
+
 
 +
'''(3)'''  Der Frequenzgang hat bei  $f = f_0 = 100 \ \rm Hz$  nach den Berechnungen zur Teilaufgabe  '''(1)'''  den Wert  $K = 0.5$. Deshalb ergibt sich  
 
:$$A_y = A_x/2 = 2\ \rm  V.$$  
 
:$$A_y = A_x/2 = 2\ \rm  V.$$  
 
*Zum gleichen Ergebnis kommt man über die Faltung nach obiger Gleichung.  
 
*Zum gleichen Ergebnis kommt man über die Faltung nach obiger Gleichung.  
*Für $a = 2f_0/Δf = 0.2$ ist das Integral gleich $π/2$ und man erhält
+
*Für  $a = 2f_0/Δf = 0.2$  ist das Integral gleich  $π/2$  und man erhält
 
:$$y(t = 0 ) = {A_y } = \frac{A_x}{\pi} \cdot \frac{\pi}{2} = \frac{A_x}{2} \hspace{0.15cm}\underline{= 2\,{\rm V}}.$$
 
:$$y(t = 0 ) = {A_y } = \frac{A_x}{\pi} \cdot \frac{\pi}{2} = \frac{A_x}{2} \hspace{0.15cm}\underline{= 2\,{\rm V}}.$$
  
  
'''(4)'''  Genau bei $f = 0.5  \ \rm kHz$ liegt der Übergang vom Durchlass– zum Sperrbereich und es gilt für diese singuläre Stelle:  
+
'''(4)'''  Genau bei  $f = 0.5  \ \rm kHz$  liegt der Übergang vom Durchlass– zum Sperrbereich und es gilt für diese singuläre Stelle:  
 
:$$H(f = f_0) = K/2.$$  
 
:$$H(f = f_0) = K/2.$$  
*Somit ist die Amplitude des Ausgangssignals nur halb so groß wie in der Teilaufgabe '''(3)'''  berechnet, nämlich $A_y \;  \underline{= 1  \, \rm V}$.  
+
*Somit ist die Amplitude des Ausgangssignals nur halb so groß wie in der Teilaufgabe  '''(3)'''  berechnet, nämlich  $A_y \;  \underline{= 1  \, \rm V}$.  
 
*Zum gleichen Ergebnis kommt man mit  $a = 2f_0/Δf = 1$  über die Faltung.
 
*Zum gleichen Ergebnis kommt man mit  $a = 2f_0/Δf = 1$  über die Faltung.
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Version vom 23. Oktober 2019, 09:38 Uhr

$\rm si$–förmige Impulsantwort

Die Impulsantwort eines linearen zeitinvarianten (und akausalen) Systems wurde wie folgt ermittelt (siehe Grafik):

$$h(t) = 500\hspace{0.1cm}{ {\rm s}}^{-1}\cdot{\rm si}\big[\pi \cdot {t}/({ 1\hspace{0.1cm}{\rm ms}})\big] .$$

Berechnet werden sollen die Ausgangssignale  $y(t)$, wenn am Eingang verschiedene Cosinusschwingungen unterschiedlicher Frequenz  $f_0$  angelegt werden:

$$x(t) = 4\hspace{0.05cm}{\rm V}\cdot {\rm cos}(2\pi \cdot f_0 \cdot t ) .$$





Hinweise:

  • Die Aufgabe gehört zum Kapitel  Einige systemtheoretische Tiefpassfunktionen.
  • Die Lösung kann im Zeitbereich oder im Frequenzbereich gefunden werden. In der Musterlösung finden Sie beide Lösungswege.
  • Gegeben ist das folgende bestimmte Integral:
$$\int_{ 0 }^{ \infty } \frac{\sin(u) \cdot \cos(a \cdot u)}{u} \hspace{0.15cm}{\rm d}u = \left\{ \begin{array}{c} \pi/2 \\ \pi/4 \\ 0 \\ \end{array} \right.\quad \quad \begin{array}{c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c}{ |a| < 1,} \\{ |a| = 1,} \\ { |a| > 1.} \\ \end{array}$$



Fragebogen

1

Berechnen Sie den Frequenzgang  $H(f)$  des LZI-Systems. Wie groß sind die äquivalente Bandbreite und der Gleichsignalübertragungsfaktor?

$\Delta f \ =\ $

$\ \rm kHz$
$H(f = 0) \ =\ $

2

Welchen Signalwert besitzt das Ausgangssignal  $y(t)$  zur Zeit  $t = 0$  bei cosinusförmigem Eingang mit der Frequenz  $\underline{f_0 = 1\ \rm kHz}$?

$y(t = 0) \ = \ $

$\ \rm V$

3

Welchen Signalwert besitzt das Ausgangssignal  $y(t)$  zur Zeit  $t = 0$  bei cosinusförmigem Eingang mit der Frequenz  $\underline{f_0 = 0.1\ \rm kHz}$?

$y(t = 0) \ =\ $

$\ \rm V$

4

Welchen Signalwert besitzt das Ausgangssignal  $y(t)$  zur Zeit  $t = 0$  bei cosinusförmigem Eingang mit der Frequenz  $\underline{f_0 = 0.5\ \rm kHz}$?

$y(t = 0) \ = \ $

$\ \rm V$


Musterlösung

(1)  Ein Vergleich mit den Gleichungen auf der Seite  Idealer Tiefpass, oder die Anwendung der  Fourierrücktransformation  zeigt, dass  $H(f)$  ein idealer Tiefpass ist:

$$H(f) = \left\{ \begin{array}{c} \hspace{0.25cm}K \\ K/2 \\ 0 \\ \end{array} \right.\quad \quad \begin{array}{*{10}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.005cm} f\hspace{0.05cm} \right| < \Delta f/2,} \\ {\left| \hspace{0.005cm}f\hspace{0.05cm} \right| = \Delta f/2,} \\ {\left|\hspace{0.005cm} f \hspace{0.05cm} \right| > \Delta f/2.} \\ \end{array}$$
  • Die äquidistanten Nulldurchgänge der Impulsantwort treten im Abstand  $Δt = 1 \ \rm ms$  auf.
  • Daraus folgt die äquivalente Bandbreite  $Δf \rm \underline{ = 1 \ \rm kHz}$. 
  • Wäre  $K = 1$, so müsste  $h(0) = Δf = 1000 \cdot \rm 1/s$  gelten.
  • Wegen der Angabe  $h(0) = 500 \cdot{\rm 1/s} = Δf/2$  ist somit der Gleichsignalübertragungsfaktor  $K = H(f = 0) \; \rm \underline{= 0.5}$.


(2)  Diese Aufgabe lässt sich am einfachsten im Spektralbereich lösen.

  • Für das Ausgangsspektrum gilt:   $Y(f) = X(f)\cdot H(f) .$
  • $X(f)$  besteht aus zwei Diracfunktionen bei  $± f_0$, jeweils mit Gewicht  $A_x/2 =2 \hspace{0.08cm}\rm V$.
  • Bei  $f = f_0 = 1 \ {\rm kHz} > Δf/2$  ist aber  $H(f) = 0$, so dass  $Y(f) = 0$  und damit auch  $y(t) = 0$  ist   ⇒   $\underline{y(t = 0) = 0}$.


Die Lösung im Zeitbereich basiert auf der Faltung:

$$y(t) = x (t) * h (t) = \int_{ - \infty }^{ + \infty } {h ( \tau )} \cdot x ( {t - \tau } ) \hspace{0.1cm}{\rm d}\tau.$$
  • Zum Zeitpunkt  $t = 0$  erhält man unter Berücksichtigung der Symmetrie der Cosinusfunktion:
$$y(t = 0 ) = \frac{A_x \cdot \Delta f}{2} \cdot \int_{ - \infty }^{ + \infty } {\rm si} ( \pi \cdot \Delta f \cdot \tau ) \cdot {\rm cos}(2\pi \cdot f_0 \cdot \tau ) \hspace{0.1cm}{\rm d}\tau.$$
  • Mit der Substitution  $u = π · Δf · τ$  kann hierfür auch geschrieben werden:
$$y(t = 0 ) = \frac{A_x }{\pi} \cdot \int_{ 0 }^{ \infty } \frac{\sin(u) \cdot \cos(a \cdot u)}{u} \hspace{0.15cm}{\rm d}u .$$
  • Hierbei ist die Konstante  $a = 2f_0/Δf = 2$. Mit diesem Wert liefert das angegebene Integral den Wert Null:   $y(t = 0 ) = {A_y } = 0.$


(3)  Der Frequenzgang hat bei  $f = f_0 = 100 \ \rm Hz$  nach den Berechnungen zur Teilaufgabe  (1)  den Wert  $K = 0.5$. Deshalb ergibt sich

$$A_y = A_x/2 = 2\ \rm V.$$
  • Zum gleichen Ergebnis kommt man über die Faltung nach obiger Gleichung.
  • Für  $a = 2f_0/Δf = 0.2$  ist das Integral gleich  $π/2$  und man erhält
$$y(t = 0 ) = {A_y } = \frac{A_x}{\pi} \cdot \frac{\pi}{2} = \frac{A_x}{2} \hspace{0.15cm}\underline{= 2\,{\rm V}}.$$


(4)  Genau bei  $f = 0.5 \ \rm kHz$  liegt der Übergang vom Durchlass– zum Sperrbereich und es gilt für diese singuläre Stelle:

$$H(f = f_0) = K/2.$$
  • Somit ist die Amplitude des Ausgangssignals nur halb so groß wie in der Teilaufgabe  (3)  berechnet, nämlich  $A_y \; \underline{= 1 \, \rm V}$.
  • Zum gleichen Ergebnis kommt man mit  $a = 2f_0/Δf = 1$  über die Faltung.