Aufgaben:Aufgabe 1.5: Karten ziehen: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 48: Zeile 48:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:<b>1.</b>&nbsp;&nbsp;Bei jeder Karte ist die Wahrscheinlichkeit f&uuml;r ein Ass genau gleich gro&szlig; (1/8):
+
'''(1)'''&nbsp; Bei jeder Karte ist die Wahrscheinlichkeit f&uuml;r ein Ass genau gleich gro&szlig; (1/8):
:$$\it  p_{\rm a} = \rm Pr (3 \hspace{0.1cm} Asse) = \rm Pr (\it A_{\rm 1})\cdot \rm Pr (\it A_{\rm 2})\cdot \rm Pr (\it A_{\rm 3}) = \rm \Big({1}/{8}\Big)^3 \hspace{0.15cm}\underline {\approx 0.002}.$$
+
$$p_{\rm 1} = {\rm Pr} (3 \hspace{0.1cm} {\rm Asse}) = {\rm Pr} (A_{\rm 1})\cdot {\rm Pr} (A_{\rm 2})\cdot {\rm Pr}(A_{\rm 3}) = \rm ({1}/{8})^3 \hspace{0.15cm}\underline {\approx 0.002}.$$
:<b>2.</b>&nbsp;&nbsp;Nun erh&auml;lt man mit dem allgemeinen Multiplikationstheorem:
+
 
:$$\it p_{\rm b} = \rm Pr (\it A_{\rm 1}\cap \it A_{\rm 2} \cap \it A_{\rm 3} ) = \rm Pr (\it A_{\rm 1}) \cdot \rm Pr (\it A_{\rm 2} |\it A_{\rm 1} ) \cdot \rm Pr (\it A_{\rm 3} |( \it A_{\rm 1}\cap \it A_{\rm 2} )).$$
+
'''(2)'''&nbsp; Nun erh&auml;lt man mit dem allgemeinen Multiplikationstheorem:
:Die bedingten Wahrscheinlichkeiten k&ouml;nnen nach der klassischen Definition berechnet werden. Man erhält somit jeweils <i>k</i>/<i>m</i> (bei <i>m</i> Karten sind noch <i>k</i> Asse enthalten):
+
$$p_{\rm 2} = {\rm Pr} (A_{\rm 1}\cap A_{\rm 2} \cap A_{\rm 3} ) = {\rm Pr} (A_{\rm 1}) \cdot {\rm Pr} (A_{\rm 2}\hspace{0.05cm}|\hspace{0.05cm}A_{\rm 1} ) \cdot {\rm Pr} [A_{\rm 3} \hspace{0.05cm}|\hspace{0.05cm}( A_{\rm 1}\cap A_{\rm 2} )].$$
:$$\it p_{\rm b} =\rm \frac{4}{32}\cdot \frac{3}{31}\cdot\frac{2}{30} \hspace{0.15cm}\underline { \approx 0.0008}.$$
+
Die bedingten Wahrscheinlichkeiten k&ouml;nnen nach der klassischen Definition berechnet werden. Man erhält somit jeweils $k/m$ (bei $m$ Karten sind noch $k$ Asse enthalten):
:<i>p</i><sub>b</sub> ist kleiner als <i>p</i><sub>a</sub>, da nun das zweite und dritte Ass unwahrscheinlicher sind als zuvor.
+
$$p_{\rm 2} ={4}/{32}\cdot {3}/{31}\cdot{2}/{30} \hspace{0.15cm}\underline { \approx 0.0008}.$$
:<b>3.</b>&nbsp;&nbsp;Analog zu Punkt (b) erh&auml;lt man hier:
+
Man erkennt: $p_2$ ist kleiner als $p_1$, da nun das zweite und dritte Ass unwahrscheinlicher sind als zuvor.
:$$\it p_{\rm c} = \rm Pr (\overline{\it A_{\rm 1}})\cdot \rm Pr (\overline{\it A_{\rm 2}} \hspace{0.05cm}|\hspace{0.05cm}\overline{\it A_{\rm 1}})\cdot \rm Pr (\overline{\it A_{\rm 3}}\hspace{0.05cm}|\hspace{0.05cm}(\overline{\it A_{\rm 1}} \cap \overline{\it A_{\rm 2}} )) =\rm \frac{28}{32}\cdot\frac{27}{31}\cdot\frac{26}{30}\hspace{0.15cm}\underline {\approx 0.6605}.$$
+
 
:<b>4.</b>&nbsp;&nbsp;Diese Wahrscheinlichkeit kann man als die Summe dreier Wahrscheinlichkeiten ausdr&uuml;cken, da die zugehörigen Ereignisse disjunkt sind:
+
'''(3)'''&nbsp; Analog zur Teilaufgabe (2) erh&auml;lt man hier:
:$$\it p_{\rm d} = \rm Pr (\it D_{\rm 1} \cup \it D_{\rm 2} \cup \it D_{\rm 3}) \rm \hspace{0.1cm}mit:$$
+
$$p_{\rm 3} = {\rm Pr}(\overline{A_{\rm 1}})\cdot {\rm Pr} (\overline{A_{\rm 2}} \hspace{0.05cm}|\hspace{0.05cm}\overline{A_{\rm 1}})\cdot {\rm Pr} (\overline{A_{\rm 3}}\hspace{0.05cm}|\hspace{0.05cm}(\overline{A_{\rm 1}} \cap \overline{A_{\rm 2}} )) = {28}/{32}\cdot{27}/{31}\cdotc{26}/{30}\hspace{0.15cm}\underline {\approx 0.6605}.$$
:$$\rm Pr (\it D_{\rm 1}) = \rm Pr (\it A_{\rm 1} \cap \overline{ \it A_{\rm 2}} \cap \overline{\it A_{\rm 3}}) = \rm \frac{4}{32}\cdot \frac{28}{31}\cdot \frac{27}{30}=\rm 0.1016,$$
+
 
:$$\rm Pr (\it D_{\rm 2}) =  \rm Pr ( \overline{\it A_{\rm 1}} \cap \it A_{\rm 2} \cap \overline{\it A_{\rm 3}})  = \rm \frac{28}{32}\cdot \frac{4}{31}\cdot \frac{27}{30}=\rm 0.1016,$$
+
'''(4)'''&nbsp; Diese Wahrscheinlichkeit kann man als die Summe dreier Wahrscheinlichkeiten ausdr&uuml;cken, da die zugehörigen Ereignisse disjunkt sind:
:$$\rm Pr (\it D_{\rm 3}) = \rm Pr ( \overline{\it A_{\rm 1}} \cap  \overline{\it A_{\rm 2}} \cap \it A_{\rm 3}) = \rm \frac{28}{32}\cdot \frac{27}{31}\cdot \frac{4}{30}=\rm 0.1016.$$
+
$$p_{\rm 4} = {\rm Pr} (D_{\rm 1} \cup D_{\rm 2} \cup D_{\rm 3}) \rm \hspace{0.1cm}mit\hspace{-0.1cm}:$$
:Diese Wahrscheinlichkeiten sind alle gleich &ndash; warum sollte es auch anders sein? Wenn man bei drei Karten genau ein Ass zieht, ist es genau so wahrscheinlich, ob man dieses als erste, als zweite oder als dritte Karte zieht. Damit erh&auml;lt man für die Summe <i>p</i><sub>d</sub> <u>= 0.3048</u>.
+
:$$ {\rm Pr} (D_{\rm 1}) = {\rm Pr}( A_{\rm 1} \cap \overline{ A_{\rm 2}} \cap \overline{A_{\rm 3}}) = \rm \frac{4}{32}\cdot \frac{28}{31}\cdot \frac{27}{30}=\rm 0.1016,$$
:<b>5.</b>&nbsp;&nbsp;Definiert man die Ereignisse <i>E<sub>i</sub></i> = &bdquo;Es werden bei drei Karten genau <i>i</i> Asse gezogen&rdquo; mit den Indizes <nobr><i>i</i> = 0, 1, 2 und 3,</nobr> so beschreiben <i>E</i><sub>0</sub>, <i>E</i><sub>1</sub>, <i>E</i><sub>2</sub> und <i>E</i><sub>3</sub> ein vollst&auml;ndiges System. Deshalb gilt:
+
:$${\rm Pr} (D_{\rm 2}) =  \rm Pr ( \overline{A_{\rm 1}} \cap A_{\rm 2} \cap \overline{A_{\rm 3}})  = \rm \frac{28}{32}\cdot \frac{4}{31}\cdot \frac{27}{30}=\rm 0.1016,$$
:$$\it p_{\rm e} = \rm Pr (\it E_{\rm 2}) = \rm 1 - \it p_{\rm b} -\it p_{\rm c} - \it p_{\rm d} \hspace{0.15cm}\underline {= \rm 0.0339}.$$
+
:$${\rm Pr} (D_{\rm 3} \rm) =   Pr ( \overline{\it A_{\rm 1}} \cap  \overline{\it A_{\rm 2}} \cap A_{\rm 3}) = \rm \frac{28}{32}\cdot \frac{27}{31}\cdot \frac{4}{30}=\rm 0.1016.$$
 +
Diese Wahrscheinlichkeiten sind alle gleich &ndash; warum sollte es auch anders sein?  
 +
 
 +
Wenn man bei drei Karten genau ein Ass zieht, ist es genau so wahrscheinlich, ob man dieses als erste, als zweite oder als dritte Karte zieht. Damit erh&auml;lt man für die Summe $p_4 \; \underline{= 0.3048}$.
 +
 
 +
'''(5)'''&nbsp; Definiert man die Ereignisse $E_i :=$ &bdquo;Es werden bei drei Karten genau $i$ Asse gezogen&rdquo; mit den Index  $i \in \{ 0, 1, 2, 3 \}$, so beschreiben $E_0$, $E_1$, $E_2$ und $E_3$ ein vollst&auml;ndiges System. Deshalb gilt:
 +
$$p_{\rm 5} = {\rm Pr}(E_2) = 1 - p_2 -p_3 - p_4 \hspace{0.15cm}\underline {= \rm 0.0339}.$$
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Version vom 22. Februar 2017, 15:37 Uhr

Karten ziehen

Aus einem Kartenspiel mit 32 Karten, darunter vier Asse, werden nacheinander drei Karten gezogen.

  • Für die Teilaufgabe (1) wird vorausgesetzt, dass nach dem Ziehen einer Karte diese in den Stapel zurückgelegt wird, danach der Kartenstapel neu gemischt und die nächste Karte gezogen wird.
  • Dagegen sollen Sie für die weiteren Teilaufgaben ab (2) davon ausgehen, dass die drei Karten auf einmal gezogen werden („Ziehen ohne Zurücklegen“).


Im Folgenden bezeichnen wir mit $A_i$ das Ereignis, dass die zum Zeitpunkt $i$ gezogene Karte ein Ass ist. Hierbei ist $t \in \{ 1, 2, 3 \}$. Das Komplementärereignis sagt dann aus, dass zum Zeitpunkt $i$ irgend eine andere Karte als ein Ass gezogen wird.

Hinweise:

  • Die Aufgabe gehört zum Kapitel Statistische Abhängigkeit und Unabhängigkeit.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
  • Eine Zusammenfassung der theoretischen Grundlagen mit Beispielen bringt das nachfolgende Lernvideo:
Statistische Abhängigkeit und Unabhängigkeit


Fragebogen

1

Betrachten Sie zunächst den Fall „Ziehen mit Zurücklegen“. Wie groß ist die Wahrscheinlichkeit $p_1$, dass drei Asse gezogen werden?

$p_1 \ = $

2

Mit welcher Wahrscheinlichkeit $p_2$ werden drei Asse gezogen, wenn man die Karten nicht zurücklegt? Warum ist $p_2$ kleiner/gleich/größer als $p_1$?

$p_2 \ = $

3

Betrachten Sie weiterhin den Fall „Ziehen ohne Zurücklegen“. Wie groß ist die Wahrscheinlichkeit $p_3$, dass kein einziges Ass gezogen wird?

$p_3 \ = $

4

Wie groß ist die Wahrscheinlichkeit $p_4$, dass genau ein Ass gezogen wird?

$p_4 \ = $

5

Wie groß ist die Wahrscheinlichkeit, dass zwei der gezogenen Karten Asse sind? Hinweis: Berücksichtigen Sie, dass die vier Ereignisse „genau $i$ Asse werden gezogen” mit $i \in \{ 0, 1, 2, 3 \}$ ein vollständiges System beschreiben.

$p_5 \ = $


Musterlösung

(1)  Bei jeder Karte ist die Wahrscheinlichkeit für ein Ass genau gleich groß (1/8): $$p_{\rm 1} = {\rm Pr} (3 \hspace{0.1cm} {\rm Asse}) = {\rm Pr} (A_{\rm 1})\cdot {\rm Pr} (A_{\rm 2})\cdot {\rm Pr}(A_{\rm 3}) = \rm ({1}/{8})^3 \hspace{0.15cm}\underline {\approx 0.002}.$$

(2)  Nun erhält man mit dem allgemeinen Multiplikationstheorem: $$p_{\rm 2} = {\rm Pr} (A_{\rm 1}\cap A_{\rm 2} \cap A_{\rm 3} ) = {\rm Pr} (A_{\rm 1}) \cdot {\rm Pr} (A_{\rm 2}\hspace{0.05cm}|\hspace{0.05cm}A_{\rm 1} ) \cdot {\rm Pr} [A_{\rm 3} \hspace{0.05cm}|\hspace{0.05cm}( A_{\rm 1}\cap A_{\rm 2} )].$$ Die bedingten Wahrscheinlichkeiten können nach der klassischen Definition berechnet werden. Man erhält somit jeweils $k/m$ (bei $m$ Karten sind noch $k$ Asse enthalten): $$p_{\rm 2} ={4}/{32}\cdot {3}/{31}\cdot{2}/{30} \hspace{0.15cm}\underline { \approx 0.0008}.$$ Man erkennt: $p_2$ ist kleiner als $p_1$, da nun das zweite und dritte Ass unwahrscheinlicher sind als zuvor.

(3)  Analog zur Teilaufgabe (2) erhält man hier: $$p_{\rm 3} = {\rm Pr}(\overline{A_{\rm 1}})\cdot {\rm Pr} (\overline{A_{\rm 2}} \hspace{0.05cm}|\hspace{0.05cm}\overline{A_{\rm 1}})\cdot {\rm Pr} (\overline{A_{\rm 3}}\hspace{0.05cm}|\hspace{0.05cm}(\overline{A_{\rm 1}} \cap \overline{A_{\rm 2}} )) = {28}/{32}\cdot{27}/{31}\cdotc{26}/{30}\hspace{0.15cm}\underline {\approx 0.6605}.$$

(4)  Diese Wahrscheinlichkeit kann man als die Summe dreier Wahrscheinlichkeiten ausdrücken, da die zugehörigen Ereignisse disjunkt sind: $$p_{\rm 4} = {\rm Pr} (D_{\rm 1} \cup D_{\rm 2} \cup D_{\rm 3}) \rm \hspace{0.1cm}mit\hspace{-0.1cm}:$$

$$ {\rm Pr} (D_{\rm 1}) = {\rm Pr}( A_{\rm 1} \cap \overline{ A_{\rm 2}} \cap \overline{A_{\rm 3}}) = \rm \frac{4}{32}\cdot \frac{28}{31}\cdot \frac{27}{30}=\rm 0.1016,$$
$${\rm Pr} (D_{\rm 2}) = \rm Pr ( \overline{A_{\rm 1}} \cap A_{\rm 2} \cap \overline{A_{\rm 3}}) = \rm \frac{28}{32}\cdot \frac{4}{31}\cdot \frac{27}{30}=\rm 0.1016,$$
$${\rm Pr} (D_{\rm 3} \rm) = Pr ( \overline{\it A_{\rm 1}} \cap \overline{\it A_{\rm 2}} \cap A_{\rm 3}) = \rm \frac{28}{32}\cdot \frac{27}{31}\cdot \frac{4}{30}=\rm 0.1016.$$

Diese Wahrscheinlichkeiten sind alle gleich – warum sollte es auch anders sein?

Wenn man bei drei Karten genau ein Ass zieht, ist es genau so wahrscheinlich, ob man dieses als erste, als zweite oder als dritte Karte zieht. Damit erhält man für die Summe $p_4 \; \underline{= 0.3048}$.

(5)  Definiert man die Ereignisse $E_i :=$ „Es werden bei drei Karten genau $i$ Asse gezogen” mit den Index $i \in \{ 0, 1, 2, 3 \}$, so beschreiben $E_0$, $E_1$, $E_2$ und $E_3$ ein vollständiges System. Deshalb gilt: $$p_{\rm 5} = {\rm Pr}(E_2) = 1 - p_2 -p_3 - p_4 \hspace{0.15cm}\underline {= \rm 0.0339}.$$