Aufgaben:Aufgabe 1.5: HDB3–Codierung: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
K (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “)
Zeile 5: Zeile 5:
  
 
[[Datei:P_ID1624__Bei_A_1_5.png|right|frame|Signale bei HDB3-Codierung]]
 
[[Datei:P_ID1624__Bei_A_1_5.png|right|frame|Signale bei HDB3-Codierung]]
Der ISDN–Primärmultiplexanschluss basiert auf dem $\rm PCM–System \ 30/32$ und bietet 30 vollduplexfähige Basiskanäle, dazu noch einen Signalisierungskanal sowie einen Synchronisationskanal.
+
Der ISDN–Primärmultiplexanschluss basiert auf dem  $\rm PCM–System \ 30/32$  und bietet 30 vollduplexfähige Basiskanäle, dazu noch einen Signalisierungskanal sowie einen Synchronisationskanal.
 +
 
 +
Jeder dieser Kanäle, die im Zeitmultiplex übertragen werden, hat eine Datenrate von  $64 \ \rm kbit/s$. Ein Rahmen besteht aus jeweils einem Byte (8 Bit) aller 32 Kanäle. Die Dauer eines solchen Rahmens wird mit  $T_{\rm R}$  bezeichnet, während  $T_{\rm B}$  die Bitdauer angibt.
 +
<br clear=all>
 +
Sowohl auf der&nbsp; $\rm S_{\rm 2M}$– als auch auf der&nbsp; $\rm U_{\rm K2}$–Schnittstelle des  betrachteten ISDN–Systems wird der&nbsp; '''HDB3–Code'''&nbsp; verwendet, der vom AMI–Code abgeleitet ist. Es handelt sich hierbei um einen Pseudoternärcode&nbsp; $($Symbolumfang&nbsp; $M = 3$, Symboldauer&nbsp; $T = T_{\rm B})$, der sich vom AMI–Code in der Weise unterscheidet, dass lange Nullfolgen durch bewusste Verletzung der AMI–Codierregel vermieden werden. Dabei gilt:
 +
 
 +
Treten im AMI–codierten Signal&nbsp; $a(t)$&nbsp; vier aufeinanderfolgende&nbsp; „'''0'''”–Symbole auf, so werden diese durch vier andere Ternärsymbole ersetzt:
 +
*Sind vor diesem Viererblock im Signal&nbsp;  $a(t)$&nbsp; eine gerade Anzahl von&nbsp; „+'''1'''”&nbsp; aufgetreten und der letzte Puls positiv, so wird&nbsp; „'''0 0 0 0'''”&nbsp; durch&nbsp; „– '''0 0''' –”&nbsp; ersetzt. Ist der letzte Puls negativ, so wird&nbsp; „'''0 0 0 0'''”&nbsp; durch&nbsp; „+ '''0 0''' +”&nbsp; ersetzt.
 +
*Bei ungerader Anzahl von Einsen vor diesem&nbsp; „'''0 0 0 0'''”–Block werden dagegen als Ersetzungen&nbsp; „'''0 0 0''' +”&nbsp; (falls letzter Puls positiv)&nbsp; oder&nbsp; „'''0 0 0''' –”&nbsp; (falls letzter Puls negativ)&nbsp; gewählt.
 +
 
 +
 
 +
Die Grafik zeigt oben das Binärsignal&nbsp; $q(t)$&nbsp; und das Signal&nbsp; $a(t)$&nbsp; nach der AMI–Codierung. Das HDB3–Signal, das Sie im Laufe dieser Aufgabe ermitteln sollen, wird mit&nbsp; $c(t)$&nbsp; bezeichnet.
 +
 
  
Jeder dieser Kanäle, die im Zeitmultiplex übertragen werden, hat eine Datenrate von $64 \ \rm kbit/s$. Ein Rahmen besteht aus jeweils einem Byte (8 Bit) aller 32 Kanäle. Die Dauer eines solchen Rahmens wird mit $T_{\rm R}$ bezeichnet, während $T_{\rm B}$ die Bitdauer angibt.
 
  
Sowohl auf der $\rm S_{\rm 2M}$– als auch auf der $\rm U_{\rm K2}$–Schnittstelle des hier betrachteten ISDN–Systems wird der HDB3–Code verwendet, der vom AMI–Code abgeleitet ist.
 
 
Es handelt sich hierbei um einen Pseudoternärcode (Symbolumfang $M = 3$, Symboldauer $T = T_{\rm B}$), der sich vom AMI–Code in der Weise unterscheidet, dass lange Nullfolgen durch bewusste Verletzung der AMI–Codierregel vermieden werden. Dabei gilt:
 
*Treten im AMI–codierten Signal $a(t)$ vier aufeinander folgende „'''0'''”–Symbole auf, so werden diese durch vier andere Ternärsymbole ersetzt.
 
*Sind vor diesem Viererblock im Signal $a(t)$ eine gerade Anzahl von „+'''1'''” aufgetreten und der letzte Puls positiv, so wird „'''0 0 0 0'''” durch „– '''0 0''' –” ersetzt. Ist der letzte Puls negativ, so wird „'''0 0 0 0'''” durch „+ '''0 0''' +” ersetzt.
 
*Bei ungerader Anzahl von Einsen vor diesem „'''0 0 0 0'''”–Block werden dagegen als Ersetzungen „'''0 0 0''' +” (falls letzter Puls positiv) oder „'''0 0 0''' –” (falls letzter Puls negativ) gewählt.
 
*Die Grafik zeigt oben das Binärsignal $q(t)$ und das Signal $a(t)$ nach der AMI–Codierung. Das HDB3–Signal, das Sie im Laufe dieser Aufgabe ermitteln sollen, wird mit $c(t)$ bezeichnet.
 
  
  
Zeile 22: Zeile 26:
 
''Hinweise:''  
 
''Hinweise:''  
  
*Die Aufgabe gehört zum Kapitel [[Beispiele_von_Nachrichtensystemen/ISDN–Primärmultiplexanschluss|ISDN–Primärmultiplexanschluss]] .  
+
*Die Aufgabe gehört zum Kapitel&nbsp; [[Beispiele_von_Nachrichtensystemen/ISDN–Primärmultiplexanschluss|ISDN–Primärmultiplexanschluss]] .  
*Informationen zu den Pseudoternärcodes finden Sie im  [[Digitalsignalübertragung/Symbolweise_Codierung_mit_Pseudoternärcodes|Symbolweise Codierung mit Pseudoternärcodes]] von „Digitalsignalübertragung”.
+
*Informationen zu den Pseudoternärcodes finden Sie im&nbsp; [[Digitalsignalübertragung/Symbolweise_Codierung_mit_Pseudoternärcodes|Symbolweise Codierung mit Pseudoternärcodes]]&nbsp; von „Digitalsignalübertragung”.
 
   
 
   
  
Zeile 36: Zeile 40:
 
$R_{\rm B} \ = \ $ { 2.048 3% } $\ \rm Mbit/s$
 
$R_{\rm B} \ = \ $ { 2.048 3% } $\ \rm Mbit/s$
  
{Welche Bitdauer $T_{\rm B}$ und Rahmendauer $T_{\rm R}$ ergeben sich daraus?
+
{Welche Bitdauer&nbsp; $T_{\rm B}$&nbsp; und Rahmendauer&nbsp; $T_{\rm R}$&nbsp; ergeben sich daraus?
 
|type="{}"}
 
|type="{}"}
$T_{\rm B} \ = \ $ { 0.488 3% } $\ \rm \mu s$
+
$T_{\rm B} \ = \ $ { 0.488 3% } $\ \rm &micro; s$
$T_{\rm R} \ = \ $ { 125 3% } $\ \rm \mu s$
+
$T_{\rm R} \ = \ $ { 125 3% } $\ \rm &micro; s$
  
{Wie wird der Nullblock zwischen Bit 6 und Bit 10 codiert?
+
{Wie wird der Nullblock zwischen Bit&nbsp; '''6'''&nbsp; und Bit&nbsp; '''10'''&nbsp; codiert?
 
|type="{}"}
 
|type="{}"}
 
$c_{6} \ = \ $ { 0 3% }  
 
$c_{6} \ = \ $ { 0 3% }  
Zeile 49: Zeile 53:
 
$c_{10} \ = \ $ { 0 3% }  
 
$c_{10} \ = \ $ { 0 3% }  
  
{Wie wird der Nullblock zwischen Bit 14 und Bit 17 codiert?
+
{Wie wird der Nullblock zwischen Bit&nbsp; '''14'''&nbsp; und Bit&nbsp; '''17'''&nbsp; codiert?
 
|type="{}"}
 
|type="{}"}
 
$c_{14} \ = \ $ { 0 3% }  
 
$c_{14} \ = \ $ { 0 3% }  
Zeile 56: Zeile 60:
 
$c_{17} \ = \ $ { 1 3% }  
 
$c_{17} \ = \ $ { 1 3% }  
  
{Wie wird der Nullblock zwischen Bit 20 und Bit 24 codiert?
+
{Wie wird der Nullblock zwischen Bit&nbsp; '''20'''&nbsp; und Bit&nbsp; '''24'''&nbsp; codiert?
 
|type="{}"}
 
|type="{}"}
 
$c_{20} \ = \ $ { -1.03--0.97 }  
 
$c_{20} \ = \ $ { -1.03--0.97 }  

Version vom 16. Juli 2019, 14:15 Uhr

Signale bei HDB3-Codierung

Der ISDN–Primärmultiplexanschluss basiert auf dem  $\rm PCM–System \ 30/32$  und bietet 30 vollduplexfähige Basiskanäle, dazu noch einen Signalisierungskanal sowie einen Synchronisationskanal.

Jeder dieser Kanäle, die im Zeitmultiplex übertragen werden, hat eine Datenrate von  $64 \ \rm kbit/s$. Ein Rahmen besteht aus jeweils einem Byte (8 Bit) aller 32 Kanäle. Die Dauer eines solchen Rahmens wird mit  $T_{\rm R}$  bezeichnet, während  $T_{\rm B}$  die Bitdauer angibt.
Sowohl auf der  $\rm S_{\rm 2M}$– als auch auf der  $\rm U_{\rm K2}$–Schnittstelle des betrachteten ISDN–Systems wird der  HDB3–Code  verwendet, der vom AMI–Code abgeleitet ist. Es handelt sich hierbei um einen Pseudoternärcode  $($Symbolumfang  $M = 3$, Symboldauer  $T = T_{\rm B})$, der sich vom AMI–Code in der Weise unterscheidet, dass lange Nullfolgen durch bewusste Verletzung der AMI–Codierregel vermieden werden. Dabei gilt:

Treten im AMI–codierten Signal  $a(t)$  vier aufeinanderfolgende  „0”–Symbole auf, so werden diese durch vier andere Ternärsymbole ersetzt:

  • Sind vor diesem Viererblock im Signal  $a(t)$  eine gerade Anzahl von  „+1”  aufgetreten und der letzte Puls positiv, so wird  „0 0 0 0”  durch  „– 0 0 –”  ersetzt. Ist der letzte Puls negativ, so wird  „0 0 0 0”  durch  „+ 0 0 +”  ersetzt.
  • Bei ungerader Anzahl von Einsen vor diesem  „0 0 0 0”–Block werden dagegen als Ersetzungen  „0 0 0 +”  (falls letzter Puls positiv)  oder  „0 0 0 –”  (falls letzter Puls negativ)  gewählt.


Die Grafik zeigt oben das Binärsignal  $q(t)$  und das Signal  $a(t)$  nach der AMI–Codierung. Das HDB3–Signal, das Sie im Laufe dieser Aufgabe ermitteln sollen, wird mit  $c(t)$  bezeichnet.




Hinweise:



Fragebogen

1

Wie groß ist die Gesamtdatenrate des ISDN–Primärmultiplexanschlusses?

$R_{\rm B} \ = \ $

$\ \rm Mbit/s$

2

Welche Bitdauer  $T_{\rm B}$  und Rahmendauer  $T_{\rm R}$  ergeben sich daraus?

$T_{\rm B} \ = \ $

$\ \rm µ s$
$T_{\rm R} \ = \ $

$\ \rm µ s$

3

Wie wird der Nullblock zwischen Bit  6  und Bit  10  codiert?

$c_{6} \ = \ $

$c_{7} \ = \ $

$c_{8} \ = \ $

$c_{9} \ = \ $

$c_{10} \ = \ $

4

Wie wird der Nullblock zwischen Bit  14  und Bit  17  codiert?

$c_{14} \ = \ $

$c_{15} \ = \ $

$c_{16} \ = \ $

$c_{17} \ = \ $

5

Wie wird der Nullblock zwischen Bit  20  und Bit  24  codiert?

$c_{20} \ = \ $

$c_{21} \ = \ $

$c_{22} \ = \ $

$c_{23} \ = \ $

$c_{24} \ = \ $


Musterlösung

(1)  Die Gesamtdatenrate der insgesamt $32$ Kanäle zu je $64 \ \rm kbit/s$ ergibt

$$R_{\rm B} \underline{ = 2.048 \ \rm Mbit/s}.$$


(2)  Die Bitdauer ist $T_{\rm B} = 1/R_{\rm B} \underline{ = 0.488 \ \rm \mu s}$. Pro Rahmen wird jeweils ein Byte (8 Bit) eines jeden Kanals übertragen. Daraus folgt:

$$T_{\rm R} = 32 \cdot 8 \cdot T_{\rm B} \hspace{0.15cm}\underline{= 125 \,{\rm \mu s}}\hspace{0.05cm}.$$

(3)  Bis zum Zeitpunkt $t = 6T$ ist im AMI–codierten Signal $a(t)$ genau einmal eine „+1” aufgetreten.

Zusammenhang zwischen AMI-Code und HDB3-Code
  • Wegen $a_{5} = –1$ wird beim HDB3–Code „0 0 0 0” ersetzt durch (siehe Grafik)
$$\underline{c_{6} = 0, \hspace{0.2cm}c_{7} = 0, \hspace{0.2cm}c_{8} = 0, \hspace{0.2cm}c_{9} = -1} \hspace{0.05cm}.$$
  • Dagegen wird $\underline{c_{10} = a_{10} = 0}$ durch die HDB3–Codierung nicht verändert.


(4)  Bis einschließlich $a_{13}$ gibt es dreimal eine „+1”   ⇒   ungerade Anzahl. Wegen $a_{12} = +1$ wird dieser Nullblock wie folgt ersetzt:

$$ \underline{c_{14} = 0, \hspace{0.2cm}c_{15} = 0, \hspace{0.2cm}c_{16} = 0, \hspace{0.2cm}c_{17} = +1} \hspace{0.05cm}.$$

(5)  Im AMI–codierten Signal tritt bis einschließlich $a_{19}$ genau viermal „+1” auf   ⇒   geradzahlige Anzahl.

  • Wegen $a_{19} = +1$ lautet die Ersetzung gemäß Regel 2 auf der Angabenseite:
$$\underline{c_{20} = -1, \hspace{0.2cm}c_{21} = 0, \hspace{0.2cm}c_{22} = 0, \hspace{0.2cm}c_{23} = -1} \hspace{0.05cm}.$$
  • Das Nullsymbol $a_{24}$ bleibt unverändert: $\underline{c_{24} = 0}$.