Aufgabe 1.2Z: Pulscodemodulation

Aus LNTwww
Version vom 9. April 2021, 14:14 Uhr von Guenter (Diskussion | Beiträge)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)
Wechseln zu:Navigation, Suche


Komponenten der Pulscodemodulation

Alle modernen Nachrichtenübertragungssysteme sind digital. Das Prinzip der digitalen Übertragung von Sprachsignalen geht auf  Alec Reeves  zurück, der die so genannte  Pulscodemodulation  $\rm (PCM)$  bereits 1938 erfunden hat.

Rechts sehen Sie das (vereinfachte) Blockschaltbild des PCM–Senders mit drei Funktionseinheiten:

  • Das bandbegrenzte Sprachsignal  ${q(t)}$  wird abgetastet, wobei das  Abtasttheorem  zu beachten ist, und ergibt das abgetastete Signal  $q_{\rm A}(t)$.
  • Jeder Abtastwert  $q_{\rm A}(t)$  wird auf einen von  $M = 2^N$  quantisierten Werten abgebildet und führt zum quantisierten Signal  $q_{\rm Q}(t)$.
  • Jeder einzelne Quantisierungswert wird durch eine Codefolge von  $N$  Binärsymbolen dargestellt und ergibt das codierte Signal  $q_{\rm C}(t)$.


In dieser Aufgabe sollen nur die verschiedenen Signale des PCM–Senders klassifiziert werden.  Spätere Aufgaben behandeln weitere Eigenschaften der Pulscodemodulation.




Hinweis:   Die Aufgabe gehört zum Kapitel  Klassifizierung von Signalen.


Fragebogen

1

Welche der Aussagen sind für das Quellensignal  ${q(t)}$  zutreffend?

Im Normalbetrieb ist  ${q(t)}$  ein stochastisches Signal.
Ein deterministisches Quellensignal ist nur bei Testbetrieb oder für theoretische Untersuchungen sinnvoll.
${q(t)}$  ist ein zeitdiskretes Signal.
${q(t)}$  ist ein wertkontinuierliches Signal.

2

Welche der Aussagen treffen für das abgetastete Signal  $q_{\rm A}(t)$  zu?

$q_{\rm A}(t)$  ist ein wertdiskretes Signal.
$q_{\rm A}(t)$  ist ein zeitdiskretes Signal.
Je größer die maximale Frequenz des Nachrichtensignals ist, desto größer muss die Abtastrate gewählt werden.

3

Welche Aussagen sind für das quantisierte Signal  $q_{\rm Q}(t)$  zutreffend, wenn  $N = 8$  zugrunde gelegt wird?

$q_{\rm Q}(t)$  ist ein zeitdiskretes Signal.
$q_{\rm Q}(t)$  ist wertdiskret mit  $M = 8$  möglichen Werten.
$q_{\rm Q}(t)$  ist wertdiskret mit  $M = 256$  möglichen Werten.
$q_{\rm Q}(t)$  ist ein Binärsignal.

4

Welche Aussagen sind für das codierte Signal  $q_{\rm C}(t)$  zutreffend, wenn  $N = 8$  zugrunde gelegt wird?

$q_{\rm C}(t)$  ist ein zeitdiskretes Signal.
$q_{\rm C}(t)$  ist ein wertdiskretes Signal mit  $M = 8$  möglichen Werten.
$q_{\rm C}(t)$  ist ein Binärsignal.
Bei Abtastung im Abstand  $T_{\rm A}$  beträgt die Bitdauer  $T_{\rm B} = T_{\rm A}$.
Bei Abtastung im Abstand  $T_{\rm A}$  beträgt die Bitdauer  $T_{\rm B} = T_{\rm A}/8$.


Musterlösung

(1)  Richtig sind die Lösungsvorschläge 1, 2 und 4:

  • Das Quellensignal  ${q(t)}$  ist analog, also wert- und zeitkontinuierlich.
  • Im Allgemeinen macht es keinen Sinn, ein deterministisches Signal zu übertragen.
  • Für die mathematische Beschreibung eignet sich ein deterministisches Quellensignal – wie zum Beispiel ein periodisches Signal – besser als ein Zufallssignal.
  • Deterministische Signale werden auch für den Testbetrieb herangezogen, um erkannte Fehlfunktionen rekonstruieren zu können.


(2)  Richtig sind die Lösungsvorschläge 2 und 3:

  • Das Signal  $q_{\rm A}(t)$  nach der Abtastung ist weiterhin wertkontinuierlich , aber nun zeitdiskret.
  • Die Abtastfrequenz  $f_{\rm A}$  ist dabei durch das so genannte  Abtasttheorem  vorgegeben.
  • Je größer die maximale Frequenz  $f_{\rm N,\,max}$  des Nachrichtensignals ist, desto größer muss  $f_{\rm A} ≥ 2 \cdot f_{\rm N,\,max}$  gewählt werden.


(3)  Richtig sind die Lösungsvorschläge 1 und 3:

  • Das quantisierte Signal  $q_{\rm Q}(t)$  ist zeit- und wertdiskret, wobei die Stufenzahl  $M = 2^8 = 256$  beträgt.
  • Ein Binärsignal ist dagegen ein wertdiskretes Signal mit der Stufenzahl  $M = 2$.



(4)  Richtig sind die Lösungsvorschläge 1, 3 und 5:

  • Das codierte Signal  $q_{\rm C}(t)$  ist binär  $($Stufenzahl  $M = 2)$  mit Bitdauer  $T_{\rm B} = T_{\rm A}/8$.