Aufgaben:Aufgabe 1.2: ISDN und PCM: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 4: Zeile 4:
  
 
[[Datei:P_ID1578__Bei_A_1_2.png|right|frame|Komponenten des PCM-Senders]]
 
[[Datei:P_ID1578__Bei_A_1_2.png|right|frame|Komponenten des PCM-Senders]]
Die Umwandlung des analogen Sprachsignals  $q(t)$  in das Binärsignal  $q_{\rm C}(t)$  geschieht bei ISDN  (''Integrated Services Digital Network'')  entsprechend den Richtlinien der Pulscodemodulation (PCM) durch
+
Die Umwandlung des analogen Sprachsignals  $q(t)$  in das Binärsignal  $q_{\rm C}(t)$  geschieht bei ISDN  ("Integrated Services Digital Network")  entsprechend den Richtlinien der Pulscodemodulation  $\rm (PCM)$  durch
 
*Abtastung im Abstand  $T_{\rm A} = 1/f_{\rm A}$,
 
*Abtastung im Abstand  $T_{\rm A} = 1/f_{\rm A}$,
 +
 
*Quantisierung auf  $M = 256$  diskrete Werte,
 
*Quantisierung auf  $M = 256$  diskrete Werte,
 +
 
*binäre PCM–Codierung mit  $N$  Bit pro Quantisierungswert.
 
*binäre PCM–Codierung mit  $N$  Bit pro Quantisierungswert.
  
  
Die Netto–Datenrate eines so genannten  $\rm B$–Kanals  (''Bearer Channel'') ist  $64 \ \rm kbit/s$  und entspricht der Bitrate des redundanzfreien Binärsignals  $q_{\rm C}(t)$. Wegen der anschließenden redundanten Kanalcodierung und der eingefügten Signalisierungsbits ist allerdings die Brutto–Datenrate – also die Übertragungsrate des Sendesignals  $s(t)$  – größer.
+
Die Netto–Datenrate eines so genannten  $\rm B$–Kanals  ("Bearer Channel")  beträgt  $64 \ \rm kbit/s$  und entspricht der Bitrate des redundanzfreien Binärsignals  $q_{\rm C}(t)$.  Wegen der anschließenden redundanten Kanalcodierung und der eingefügten Signalisierungsbits ist allerdings die Brutto–Datenrate – also die Übertragungsrate des Sendesignals  $s(t)$  – größer.
  
  
Ein Maß für die Qualität des gesamten (ISDN–)Übertragungssystems ist das Sinken–SNR
+
Ein Maß für die Qualität des gesamten ISDN–Übertragungssystems ist das Sinken–SNR
 
:$$\rho_{v} = \frac{P_q}{P_{\varepsilon}} = \frac{\overline{q(t)^2}}{\overline{[\upsilon(t) - q(t)]^2}}$$
 
:$$\rho_{v} = \frac{P_q}{P_{\varepsilon}} = \frac{\overline{q(t)^2}}{\overline{[\upsilon(t) - q(t)]^2}}$$
  
als das Verhältnis der Leistungen des auf den Bereich  $300 \ {\rm Hz}\  \text{...}\  3400 \ {\rm Hz}$  bandbegrenzten Analogsignals  $q(t)$  und des Fehlersignals  $\varepsilon (t) = v (t) - q(t)$.
+
als das Verhältnis der Leistungen  
 +
*des auf den Bereich  $300 \ {\rm Hz}\  \text{...}\  3400 \ {\rm Hz}$  bandbegrenzten Analogsignals  $q(t)$   
  
Für das Sinkensignal  $v (t)$  wird hierbei eine ideale Signalrekonstruktion mit einem idealen rechteckförmigen Tiefpass vorausgesetzt.
+
*und des Fehlersignals  $\varepsilon (t) = v (t) - q(t)$.  
  
  
 +
Für das Sinkensignal  $v (t)$  wird hierbei eine ideale Signalrekonstruktion mit einem idealen rechteckförmigen Tiefpass vorausgesetzt.
  
  
  
  
 +
<u>Hinweis:</u>
 +
*Die Aufgabe bezieht sich auf das Kapitel&nbsp; [[Beispiele_von_Nachrichtensystemen/Allgemeine_Beschreibung_von_ISDN|"Allgemeine Beschreibung von ISDN"]] dieses Buches.
  
''Hinweis:''
+
*Bezug genommen wird auch auf das Kapitel&nbsp; [[Modulationsverfahren/Pulscodemodulation|"Pulscodemodulation"]]&nbsp; des Buches „Modulationsverfahren”.
*Die Aufgabe bezieht sich auf das Kapitel&nbsp; [[Beispiele_von_Nachrichtensystemen/Allgemeine_Beschreibung_von_ISDN|Allgemeine Beschreibung von ISDN]] dieses Buches.
 
*Bezug genommen wird auch auf das Kapitel&nbsp; [[Modulationsverfahren/Pulscodemodulation|Pulscodemodulation]]&nbsp; des Buches „Modulationsverfahren”.
 
  
  
Zeile 36: Zeile 40:
 
<quiz display=simple>
 
<quiz display=simple>
  
{Mit wievielen Bit&nbsp; $(N)$&nbsp; wird jeder (quantisierte) Abtastwert repräsentiert?
+
{Mit wievielen Bit&nbsp; $(N)$&nbsp; wird jeder quantisierte Abtastwert repräsentiert?
 
|type="{}"}
 
|type="{}"}
 
$N \ = \ $ { 8 3% }  
 
$N \ = \ $ { 8 3% }  
Zeile 51: Zeile 55:
 
{Ist das Sinken–SNR&nbsp; $\rho_{v}$&nbsp; bei ISDN durch folgende Effekte begrenzt?
 
{Ist das Sinken–SNR&nbsp; $\rho_{v}$&nbsp; bei ISDN durch folgende Effekte begrenzt?
 
|type="[]"}
 
|type="[]"}
- Abtastung (falls Abtasttheorem erfüllt),
+
- Abtastung&nbsp; (falls das Abtasttheorem erfüllt ist),
 
+ AWGN–Rauschen (Übertragungsfehler).
 
+ AWGN–Rauschen (Übertragungsfehler).
  

Version vom 15. Oktober 2022, 15:44 Uhr

Komponenten des PCM-Senders

Die Umwandlung des analogen Sprachsignals  $q(t)$  in das Binärsignal  $q_{\rm C}(t)$  geschieht bei ISDN  ("Integrated Services Digital Network")  entsprechend den Richtlinien der Pulscodemodulation  $\rm (PCM)$  durch

  • Abtastung im Abstand  $T_{\rm A} = 1/f_{\rm A}$,
  • Quantisierung auf  $M = 256$  diskrete Werte,
  • binäre PCM–Codierung mit  $N$  Bit pro Quantisierungswert.


Die Netto–Datenrate eines so genannten  $\rm B$–Kanals  ("Bearer Channel")  beträgt  $64 \ \rm kbit/s$  und entspricht der Bitrate des redundanzfreien Binärsignals  $q_{\rm C}(t)$.  Wegen der anschließenden redundanten Kanalcodierung und der eingefügten Signalisierungsbits ist allerdings die Brutto–Datenrate – also die Übertragungsrate des Sendesignals  $s(t)$  – größer.


Ein Maß für die Qualität des gesamten ISDN–Übertragungssystems ist das Sinken–SNR

$$\rho_{v} = \frac{P_q}{P_{\varepsilon}} = \frac{\overline{q(t)^2}}{\overline{[\upsilon(t) - q(t)]^2}}$$

als das Verhältnis der Leistungen

  • des auf den Bereich  $300 \ {\rm Hz}\ \text{...}\ 3400 \ {\rm Hz}$  bandbegrenzten Analogsignals  $q(t)$ 
  • und des Fehlersignals  $\varepsilon (t) = v (t) - q(t)$.


Für das Sinkensignal  $v (t)$  wird hierbei eine ideale Signalrekonstruktion mit einem idealen rechteckförmigen Tiefpass vorausgesetzt.



Hinweis:

  • Bezug genommen wird auch auf das Kapitel  "Pulscodemodulation"  des Buches „Modulationsverfahren”.


Fragebogen

1

Mit wievielen Bit  $(N)$  wird jeder quantisierte Abtastwert repräsentiert?

$N \ = \ $

2

Wie groß ist die Abtastrate  $f_{\rm A} $?

$f_{\rm A} \ = \ $

$ \ \rm kHz $

3

Ist damit das Abtasttheorem erfüllt?

Ja,
nein.

4

Ist das Sinken–SNR  $\rho_{v}$  bei ISDN durch folgende Effekte begrenzt?

Abtastung  (falls das Abtasttheorem erfüllt ist),
AWGN–Rauschen (Übertragungsfehler).


Musterlösung

(1)  Die Quantisierungsstufenzahl  $M$  wird meist als Zweierpotenz gewählt und für die Bitanzahl  $N = {\log_2}\hspace{0.05cm}(M)$.

  • Aus  $M = 2^{8} = 256$  folgt  $\underline{N = 8}$.


(2)  Für die Bitrate gilt  $R_{\rm B} = N \cdot f_{\rm A}$.

  • Aus  $R_{\rm B} = 64 \ \rm kbit/s$  und  $N = 8$  erhält man somit  $f_{\rm A} \hspace{0.15cm}\underline{= 8 \ \rm kHz}$.


(3)  Durch die Bandbegrenzung ist die höchste im Signal  $q(t)$  enthaltene Frequenz gleich  $3.4 \ \rm kHz$.

  • Nach dem Abtasttheorem müsste deshalb  $f_{\rm A} ≥ 6.8 \ \rm kHz$  gelten.
  • Mit  $f_{\rm A} = 8 \ \rm kHz$  ist die Bedingung erfüllt   ⇒   $\underline {\rm JA}$.


(4)  Richtig ist die letzte Aussage:

  • Auch wenn der Einfluss des AWGN–Rauschens gering ist $($kleine Rauschleistungsdichte  $N_{0})$, kann das Sinken–SNR  $\rho_{v}$  einen durch das Quantisierungsrauschen gegebenen Grenzwert nicht unterschreiten:
$$\rho_{v} \approx \rho_{\rm Q} = 2^{2M} = 2^{16} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \rho_{v} \approx 48\, {\rm dB}\hspace{0.05cm}.$$
  • Bei größerer Rauschstörung wird  $\rho_{v}$  durch die dann vorhandenen Übertragungsfehler weiter (signifikant) verringert.
  • Dagegen führt die Abtastung zu keinem Qualitätsverlust, wenn das Abtasttheorem eingehalten wird.
  • Die Abtastung kann dann vollständig rückgängig gemacht werden, wenn das Quellensignal  $q(t)$  bandbegrenzt ist und die Signalrekonstruktion richtig dimensioniert ist:  idealer Tiefpass.