Aufgaben:Aufgabe 1.2: ISDN und PCM: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(2 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt)
Zeile 4: Zeile 4:
  
 
[[Datei:P_ID1578__Bei_A_1_2.png|right|frame|Komponenten des PCM-Senders]]
 
[[Datei:P_ID1578__Bei_A_1_2.png|right|frame|Komponenten des PCM-Senders]]
Die Umwandlung des analogen Sprachsignals $q(t)$ in das Binärsignal $q_{\rm C}(t)$ geschieht bei ISDN (''Integrated Services Digital Network'') entsprechend den Richtlinien der Pulscodemodulation (PCM) durch
+
Die Umwandlung des analogen Sprachsignals  $q(t)$  in das Binärsignal  $q_{\rm C}(t)$  geschieht bei ISDN  (''Integrated Services Digital Network'')  entsprechend den Richtlinien der Pulscodemodulation (PCM) durch
*Abtastung im Abstand $T_{\rm A} = 1/f_{\rm A}$,
+
*Abtastung im Abstand  $T_{\rm A} = 1/f_{\rm A}$,
*Quantisierung auf $M = 256$ diskrete Werte,
+
*Quantisierung auf  $M = 256$  diskrete Werte,
*binäre PCM–Codierung mit $N$ Bit pro Quantisierungswert.
+
*binäre PCM–Codierung mit  $N$  Bit pro Quantisierungswert.
  
  
Die Netto–Datenrate eines so genannten $\rm B$–Kanals (''Bearer Channel'') ist $64 \ \rm kbit/s$ und entspricht der Bitrate des redundanzfreien Binärsignals $q_{\rm C}(t)$. Wegen der anschließenden redundanten Kanalcodierung und der eingefügten Signalisierungsbits ist allerdings die Brutto–Datenrate – also die Übertragungsrate des Sendesignals $s(t)$ – größer.
+
Die Netto–Datenrate eines so genannten  $\rm B$–Kanals  (''Bearer Channel'') ist  $64 \ \rm kbit/s$  und entspricht der Bitrate des redundanzfreien Binärsignals  $q_{\rm C}(t)$. Wegen der anschließenden redundanten Kanalcodierung und der eingefügten Signalisierungsbits ist allerdings die Brutto–Datenrate – also die Übertragungsrate des Sendesignals  $s(t)$  – größer.
  
  
Zeile 16: Zeile 16:
 
:$$\rho_{v} = \frac{P_q}{P_{\varepsilon}} = \frac{\overline{q(t)^2}}{\overline{[\upsilon(t) - q(t)]^2}}$$
 
:$$\rho_{v} = \frac{P_q}{P_{\varepsilon}} = \frac{\overline{q(t)^2}}{\overline{[\upsilon(t) - q(t)]^2}}$$
  
als das Verhältnis der Leistungen des auf den Bereich $300 \ {\rm Hz}\  \text{...}\  3400 \ {\rm Hz}$ bandbegrenzten Analogsignals $q(t)$ und des Fehlersignals $\varepsilon (t) = v (t) - q(t)$. Für das Sinkensignal $\upsilon (t)$ wird hierbei eine ideale Signalrekonstruktion mit einem idealen rechteckförmigen Tiefpass vorausgesetzt.
+
als das Verhältnis der Leistungen des auf den Bereich  $300 \ {\rm Hz}\  \text{...}\  3400 \ {\rm Hz}$  bandbegrenzten Analogsignals  $q(t)$  und des Fehlersignals  $\varepsilon (t) = v (t) - q(t)$.  
 +
 
 +
Für das Sinkensignal  $v (t)$  wird hierbei eine ideale Signalrekonstruktion mit einem idealen rechteckförmigen Tiefpass vorausgesetzt.
 +
 
 +
 
 +
 
  
  
Zeile 22: Zeile 27:
  
 
''Hinweis:''  
 
''Hinweis:''  
 
+
*Die Aufgabe bezieht sich auf das Kapitel  [[Beispiele_von_Nachrichtensystemen/Allgemeine_Beschreibung_von_ISDN|Allgemeine Beschreibung von ISDN]] dieses Buches.
Die Aufgabe bezieht sich auf [[Beispiele_von_Nachrichtensystemen/Allgemeine_Beschreibung_von_UMTS|Allgemeine Beschreibung von ISDN]] dieses Buches sowie auf [[Modulationsverfahren/Pulscodemodulation|Pulscodemodulation]] des Buches „Modulationsverfahren”.
+
*Bezug genommen wird auch auf das Kapitel  [[Modulationsverfahren/Pulscodemodulation|Pulscodemodulation]]  des Buches „Modulationsverfahren”.
  
  
Zeile 31: Zeile 36:
 
<quiz display=simple>
 
<quiz display=simple>
  
{Mit wievielen Bit $(N)$ wird jeder (quantisierte) Abtastwert repräsentiert?
+
{Mit wievielen Bit&nbsp; $(N)$&nbsp; wird jeder (quantisierte) Abtastwert repräsentiert?
 
|type="{}"}
 
|type="{}"}
 
$N \ = \ $ { 8 3% }  
 
$N \ = \ $ { 8 3% }  
  
{Wie groß ist die Abtastrate $f_{\rm A} $?
+
{Wie groß ist die Abtastrate&nbsp; $f_{\rm A} $?
 
|type="{}"}
 
|type="{}"}
 
$f_{\rm A} \ = \ $ { 8 3% } $ \ \rm kHz $
 
$f_{\rm A} \ = \ $ { 8 3% } $ \ \rm kHz $
Zeile 44: Zeile 49:
 
- nein.
 
- nein.
  
{Ist das Sinken–SNR $\rho_{v}$ bei ISDN durch folgende Effekte begrenzt?
+
{Ist das Sinken–SNR&nbsp; $\rho_{v}$&nbsp; bei ISDN durch folgende Effekte begrenzt?
 
|type="[]"}
 
|type="[]"}
 
- Abtastung (falls Abtasttheorem erfüllt),
 
- Abtastung (falls Abtasttheorem erfüllt),
Zeile 55: Zeile 60:
 
{{ML-Kopf}}
 
{{ML-Kopf}}
  
'''(1)'''&nbsp; Die Quantisierungsstufenzahl $M$ wird meist als Zweierpotenz gewählt und für die Bitanzahl $N = {\log_2}\hspace{0.05cm}(M)$. <br>Aus $M = 2^{8} = 256$ folgt $\underline{N = 8}$.
+
'''(1)'''&nbsp; Die Quantisierungsstufenzahl&nbsp; $M$&nbsp; wird meist als Zweierpotenz gewählt und für die Bitanzahl&nbsp; $N = {\log_2}\hspace{0.05cm}(M)$.  
 +
*Aus&nbsp; $M = 2^{8} = 256$&nbsp; folgt&nbsp; $\underline{N = 8}$.
 +
 
 +
 
  
 +
'''(2)'''&nbsp;  Für die Bitrate gilt&nbsp; $R_{\rm B} = N \cdot f_{\rm A}$.
 +
*Aus&nbsp; $R_{\rm B} = 64 \ \rm  kbit/s$&nbsp; und&nbsp; $N = 8$&nbsp; erhält man somit&nbsp; $f_{\rm A} \hspace{0.15cm}\underline{= 8 \ \rm kHz}$.
  
'''(2)'''&nbsp;  Für die Bitrate gilt $R_{\rm B} = N \cdot f_{\rm A}$. Aus $R_{\rm B} = 64 \ \rm  kbit/s$ und $N = 8$ erhält man somit $f_{\rm A} \hspace{0.15cm}\underline{= 8 \ \rm kHz}$.
 
  
  
'''(3)'''&nbsp;  Durch die Bandbegrenzung ist die höchste im Signal $q(t)$ enthaltene Frequenz gleich $3.4 \ \rm kHz$. Nach dem Abtasttheorem müsste deshalb $f_{\rm A} ≥ 6.8 \ \rm kHz$ gelten. Mit  $f_{\rm A} = 8 \ \rm kHz$ ist die Bedingung erfüllt &nbsp; &rArr; &nbsp; $\underline {\rm JA}$.
+
'''(3)'''&nbsp;  Durch die Bandbegrenzung ist die höchste im Signal&nbsp; $q(t)$&nbsp; enthaltene Frequenz gleich&nbsp; $3.4 \ \rm kHz$.  
 +
*Nach dem Abtasttheorem müsste deshalb&nbsp; $f_{\rm A} ≥ 6.8 \ \rm kHz$&nbsp; gelten.  
 +
*Mit&nbsp; $f_{\rm A} = 8 \ \rm kHz$&nbsp; ist die Bedingung erfüllt &nbsp; &rArr; &nbsp; $\underline {\rm JA}$.
  
  
'''(4)'''&nbsp;  Richtig sind die <u>beiden letzten Aussagen</u>:
+
'''(4)'''&nbsp;  Richtig ist die <u>letzte Aussage</u>:
*Auch wenn der Einfluss des AWGN–Rauschens gering ist (kleine Rauschleistungsdichte $N_{0}$), kann das Sinken–SNR $\rho_{v}$ einen durch das Quantisierungsrauschen gegebenen Grenzwert nicht unterschreiten:
+
*Auch wenn der Einfluss des AWGN–Rauschens gering ist $($kleine Rauschleistungsdichte&nbsp; $N_{0})$, kann das Sinken–SNR&nbsp; $\rho_{v}$&nbsp; einen durch das Quantisierungsrauschen gegebenen Grenzwert nicht unterschreiten:
 
:$$\rho_{v} \approx \rho_{\rm Q} = 2^{2M} = 2^{16} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \rho_{v} \approx 48\, {\rm dB}\hspace{0.05cm}.$$
 
:$$\rho_{v} \approx \rho_{\rm Q} = 2^{2M} = 2^{16} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \rho_{v} \approx 48\, {\rm dB}\hspace{0.05cm}.$$
  
*Bei größerer Rauschstörung wird $\rho_{v}$ durch die dann vorhandenen Übertragungsfehler weiter (signifikant) verringert.  
+
*Bei größerer Rauschstörung wird&nbsp; $\rho_{v}$&nbsp; durch die dann vorhandenen Übertragungsfehler weiter (signifikant) verringert.  
 
*Dagegen führt die Abtastung zu keinem Qualitätsverlust, wenn das Abtasttheorem eingehalten wird.  
 
*Dagegen führt die Abtastung zu keinem Qualitätsverlust, wenn das Abtasttheorem eingehalten wird.  
*Die Abtastung kann dann vollständig rückgängig gemacht werden, wenn das Quellensignal $q(t)$ bandbegrenzt ist und die Signalrekonstruktion (ein idealer Tiefpass) richtig dimensioniert ist.  
+
*Die Abtastung kann dann vollständig rückgängig gemacht werden, wenn das Quellensignal&nbsp; $q(t)$&nbsp; bandbegrenzt ist und die Signalrekonstruktion richtig dimensioniert ist:&nbsp;  idealer Tiefpass.  
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Aktuelle Version vom 12. Juli 2019, 15:33 Uhr

Komponenten des PCM-Senders

Die Umwandlung des analogen Sprachsignals  $q(t)$  in das Binärsignal  $q_{\rm C}(t)$  geschieht bei ISDN  (Integrated Services Digital Network)  entsprechend den Richtlinien der Pulscodemodulation (PCM) durch

  • Abtastung im Abstand  $T_{\rm A} = 1/f_{\rm A}$,
  • Quantisierung auf  $M = 256$  diskrete Werte,
  • binäre PCM–Codierung mit  $N$  Bit pro Quantisierungswert.


Die Netto–Datenrate eines so genannten  $\rm B$–Kanals  (Bearer Channel) ist  $64 \ \rm kbit/s$  und entspricht der Bitrate des redundanzfreien Binärsignals  $q_{\rm C}(t)$. Wegen der anschließenden redundanten Kanalcodierung und der eingefügten Signalisierungsbits ist allerdings die Brutto–Datenrate – also die Übertragungsrate des Sendesignals  $s(t)$  – größer.


Ein Maß für die Qualität des gesamten (ISDN–)Übertragungssystems ist das Sinken–SNR

$$\rho_{v} = \frac{P_q}{P_{\varepsilon}} = \frac{\overline{q(t)^2}}{\overline{[\upsilon(t) - q(t)]^2}}$$

als das Verhältnis der Leistungen des auf den Bereich  $300 \ {\rm Hz}\ \text{...}\ 3400 \ {\rm Hz}$  bandbegrenzten Analogsignals  $q(t)$  und des Fehlersignals  $\varepsilon (t) = v (t) - q(t)$.

Für das Sinkensignal  $v (t)$  wird hierbei eine ideale Signalrekonstruktion mit einem idealen rechteckförmigen Tiefpass vorausgesetzt.




Hinweis:


Fragebogen

1

Mit wievielen Bit  $(N)$  wird jeder (quantisierte) Abtastwert repräsentiert?

$N \ = \ $

2

Wie groß ist die Abtastrate  $f_{\rm A} $?

$f_{\rm A} \ = \ $

$ \ \rm kHz $

3

Ist damit das Abtasttheorem erfüllt?

Ja,
nein.

4

Ist das Sinken–SNR  $\rho_{v}$  bei ISDN durch folgende Effekte begrenzt?

Abtastung (falls Abtasttheorem erfüllt),
AWGN–Rauschen (Übertragungsfehler).


Musterlösung

(1)  Die Quantisierungsstufenzahl  $M$  wird meist als Zweierpotenz gewählt und für die Bitanzahl  $N = {\log_2}\hspace{0.05cm}(M)$.

  • Aus  $M = 2^{8} = 256$  folgt  $\underline{N = 8}$.


(2)  Für die Bitrate gilt  $R_{\rm B} = N \cdot f_{\rm A}$.

  • Aus  $R_{\rm B} = 64 \ \rm kbit/s$  und  $N = 8$  erhält man somit  $f_{\rm A} \hspace{0.15cm}\underline{= 8 \ \rm kHz}$.


(3)  Durch die Bandbegrenzung ist die höchste im Signal  $q(t)$  enthaltene Frequenz gleich  $3.4 \ \rm kHz$.

  • Nach dem Abtasttheorem müsste deshalb  $f_{\rm A} ≥ 6.8 \ \rm kHz$  gelten.
  • Mit  $f_{\rm A} = 8 \ \rm kHz$  ist die Bedingung erfüllt   ⇒   $\underline {\rm JA}$.


(4)  Richtig ist die letzte Aussage:

  • Auch wenn der Einfluss des AWGN–Rauschens gering ist $($kleine Rauschleistungsdichte  $N_{0})$, kann das Sinken–SNR  $\rho_{v}$  einen durch das Quantisierungsrauschen gegebenen Grenzwert nicht unterschreiten:
$$\rho_{v} \approx \rho_{\rm Q} = 2^{2M} = 2^{16} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \rho_{v} \approx 48\, {\rm dB}\hspace{0.05cm}.$$
  • Bei größerer Rauschstörung wird  $\rho_{v}$  durch die dann vorhandenen Übertragungsfehler weiter (signifikant) verringert.
  • Dagegen führt die Abtastung zu keinem Qualitätsverlust, wenn das Abtasttheorem eingehalten wird.
  • Die Abtastung kann dann vollständig rückgängig gemacht werden, wenn das Quellensignal  $q(t)$  bandbegrenzt ist und die Signalrekonstruktion richtig dimensioniert ist:  idealer Tiefpass.