Aufgaben:Aufgabe 1.1Z: Tiefpass 1. und 2. Ordnung: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 54: Zeile 54:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
:'''a)'''
+
:'''a)''' Der Amplitudengang des Tiefpasses erster Ordnung lautet:
 +
$$|H_{\rm 1}(f)| = \frac{1}{\sqrt{1+ (f/f_0)^2}}.$$
 +
:Damit erhält man den Dämpfungsverlauf in Neper:
 +
$$\begin{align*}a_1(f) = \ln \frac{1}{|H_1(f)|} & = {1}/{2} \cdot \ln \left[1 + ({f}/{f_0})^2 \right] \\ \Rightarrow a_1(f = f_0) & = 0.34657 \hspace{0.05 cm}{\rm Np},\hspace{0.5 cm}a_1(f = 2 f_0) =
 +
0.804719 \hspace{0.05 cm}{\rm Np}.\end{align*}$$
 +
:Die entsprechenden dB–Werte erhält man durch Multiplikation mit 1/0.115 = 8.68589 und führt zu den Ergebnissen $\rm \underline{3.01 dB ≈ 3 dB} (f = f_0)$ und $\rm \underline{6.99 dB} (f = 2f_0)$. Beim Tiefpass erster Ordnung beträgt somit die 3dB–Grenzfrequenz $f_{\rm G} = f_0$.
 
:'''b)'''
 
:'''b)'''
 
:'''c)'''
 
:'''c)'''

Version vom 8. Juli 2016, 18:42 Uhr

Z1.1 Tiefpass 1. und 2. Ordnung

P ID785 LZI Z 1 1.png

Die einfachste Form eines Tiefpasses – zum Beispiel realisierbar als ein RC–Tiefpass entsprechend der Aufgabe A1.1 – hat den folgenden Frequenzgang: $$H_{\rm 1}(f) = \frac{1}{1+{\rm j}\cdot f/f_0}.$$ Man spricht dann von einem Tiefpass erster Ordnung. Der Dämpfungsverlauf $a_1(f)$ und der Phasenverlauf $b_1(f)$ dieses Filters sind in der Grafik dargestellt.

Entsprechend gilt für einen Tiefpass $n$–ter Ordnung die folgende Definitionsgleichung: $$H_n(f) = H_{\rm 1}(f)^n.$$ In dieser Aufgabe sollen – ausgehend von den Funktionen $a_1(f)$ und $b_1(f)$ eines Tiefpasses erster Ordnung – der Dämpfungs– und Phasenverlauf eines solchen Tiefpasses höherer Ordnung analysiert werden. Allgemein gilt: $$H(f) = {\rm e}^{-a(f) - {\rm j}\cdot b(f)}.$$


Hinweis: Diese Aufgabe bezieht sich auf die theoretischen Grundlagen von Kapitel 1.1. Zwischen dem Np– und dem dB–Wert eines Amplitudenwertes $|H| = 1/x$ besteht folgender Zusammenhang: $$a_{\rm Np} = \ln (x) = \ln (10) \cdot \lg (x) = \frac{\ln (10)}{20} \cdot a_{\rm dB} \approx 0.11513 \cdot a_{\rm dB}.$$ Berücksichtigen Sie weiter, dass für zwei komplexe Größen $z_1$ und $z_2$ folgende Gleichungen gelten: $$|z_1 \cdot z_2| = |z_1| \cdot |z_2|, \hspace{0.5 cm}{\rm arc}\hspace{0.05 cm}(z_1 \cdot z_2) = {\rm arc}\hspace{0.05 cm}(z_1) + {\rm arc}\hspace{0.05 cm}(z_2).$$


Fragebogen

1

Berechnen Sie den Dämpfungsverlauf $a_1(f)$ eines Tiefpasses erster Ordnung in dB. Welche dB–Werte ergeben sich bei $f = f_0$ und $f = 2f_0$?

$a_1(f = f_0)$ =

dB
$a_1(f = 2f_0)$ =

dB

2

Berechnen Sie den Phasenverlauf $b_1(f)$. Welche Werte in Radian (rad) erhält man bei $f = f_0$ und $f = 2f_0$?

$b_1(f = f_0)$ =

rad
$b_1(f = 2f_0)$ =

rad

3

Welchen Dämpfungsverlauf $a_n(f)$ hat ein Tiefpass $n$–ter Ordnung? Welche dB–Werte erhält man mit $n =$ 2 für $f = f_0$ bzw. $f = –2f_0$?

$a_2(f = f_0)$ =

dB
$a_2(f = -2f_0)$ =

dB

4

Berechnen Sie die Phasenfunktion $b_2(f)$ eines Tiefpasses zweiter Ordnung. Welche Werte (in Radian) erhält man für $f = f_0$ und $f = –2f_0$?

$b_2(f = f_0)$ =

rad
$b_2(f = -2f_0)$ =

rad


Musterlösung

a) Der Amplitudengang des Tiefpasses erster Ordnung lautet:

$$|H_{\rm 1}(f)| = \frac{1}{\sqrt{1+ (f/f_0)^2}}.$$

Damit erhält man den Dämpfungsverlauf in Neper:

$$\begin{align*}a_1(f) = \ln \frac{1}{|H_1(f)|} & = {1}/{2} \cdot \ln \left[1 + ({f}/{f_0})^2 \right] \\ \Rightarrow a_1(f = f_0) & = 0.34657 \hspace{0.05 cm}{\rm Np},\hspace{0.5 cm}a_1(f = 2 f_0) = 0.804719 \hspace{0.05 cm}{\rm Np}.\end{align*}$$

Die entsprechenden dB–Werte erhält man durch Multiplikation mit 1/0.115 = 8.68589 und führt zu den Ergebnissen $\rm \underline{3.01 dB ≈ 3 dB} (f = f_0)$ und $\rm \underline{6.99 dB} (f = 2f_0)$. Beim Tiefpass erster Ordnung beträgt somit die 3dB–Grenzfrequenz $f_{\rm G} = f_0$.
b)
c)
d)
e)
f)
g)