Aufgaben:Aufgabe 1.1: Sendegrundimpulse: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
(15 dazwischenliegende Versionen von 5 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
  
{{quiz-Header|Buchseite=Digitalsignalübertragung/Basisband-Systemkomponenten
+
{{quiz-Header|Buchseite=Digitalsignalübertragung/Systemkomponenten eines Basisbandübertragungssystems
 
}}
 
}}
  
  
[[Datei:P_ID1256__Dig_A_1_1.png|right|frame|Sendegrundimpulse]]
+
[[Datei:P_ID1256__Dig_A_1_1.png|right|frame|Betrachtete Sendegrundimpulse]]
Wir untersuchen in dieser Aufgabe die zwei in der Grafik dargestellten Sendesignale $s_{\rm R}(t)$ und $s_{\rm C}(t)$ mit Rechteck– bzw. cos2–Sendegrundimpuls. Insbesondere sollen für die jeweiligen Impulse $g_s(t)$ folgende Kenngrößen berechnet werden:
+
Wir untersuchen in dieser Aufgabe die zwei in der Grafik dargestellten Sendesignale  $s_{\rm R}(t)$  und  $s_{\rm C}(t)$  mit Rechteck– bzw.  $\cos^2$–Sendegrundimpuls.  Insbesondere sollen für die jeweiligen Sendegrundimpulse  $g_s(t)$  folgende Kenngrößen berechnet werden:
*die äquivalente Impulsdauer von $g_s(t)$:
+
*die äquivalente Impulsdauer von  $g_s(t)$:
 
:$$\Delta t_{\rm S} =  \frac {\int ^{+\infty} _{-\infty} \hspace{0.15cm} g_s(t)\,{\rm
 
:$$\Delta t_{\rm S} =  \frac {\int ^{+\infty} _{-\infty} \hspace{0.15cm} g_s(t)\,{\rm
 
  d}t}{{\rm Max} \hspace{0.05cm}[g_s(t)]} \hspace{0.05cm},$$
 
  d}t}{{\rm Max} \hspace{0.05cm}[g_s(t)]} \hspace{0.05cm},$$
*die Energie des Sendegrundimpulses $g_s(t)$:
+
*die Energie von  $g_s(t)$:
 
:$$E_g =  \int^{+\infty} _{-\infty} g_s^2(t)\,{\rm
 
:$$E_g =  \int^{+\infty} _{-\infty} g_s^2(t)\,{\rm
 
  d}t \hspace{0.05cm},$$
 
  d}t \hspace{0.05cm},$$
*die Leistung des Sendesignals $s(t)$:
+
*die Leistung des Sendesignals  $s(t)$:
 
:$$P_{\rm S} =  \lim_{T_{\rm M} \to \infty} \frac{1}{+T_{\rm M}} \cdot \int^{+T_{\rm M}/2} _{-T_{\rm M}/2} s^2(t)\,{\rm
 
:$$P_{\rm S} =  \lim_{T_{\rm M} \to \infty} \frac{1}{+T_{\rm M}} \cdot \int^{+T_{\rm M}/2} _{-T_{\rm M}/2} s^2(t)\,{\rm
 
  d}t \hspace{0.05cm}.$$
 
  d}t \hspace{0.05cm}.$$
  
  
Gehen Sie bei Ihren Berechnungen stets davon aus, dass die beiden möglichen Amplitudenkoeffizienten gleichwahrscheinlich sind und dass der Abstand zwischen benachbarten Symbolen $T = 1 \ \rm  μs$ beträgt. Dies entspricht einer Bitrate von $R = 1 \ \rm Mbit/s$.  
+
Gehen Sie bei Ihren Berechnungen stets davon aus,  dass die beiden möglichen Amplitudenkoeffizienten gleichwahrscheinlich sind und dass der zeitliche Abstand zwischen benachbarten Symbolen  $T = 1 \ \rm  µ s$  beträgt.  Dies entspricht einer Bitrate von  $R = 1 \ \rm Mbit/s$.  
  
*Der (positive) Maximalwert des Sendesignals ist in beiden Fällen gleich
+
*Der  (positive)  Maximalwert des Sendesignals ist in beiden Fällen gleich
 
:$$s_0 =  \sqrt{0.5\, {\rm W}}  \hspace{0.05cm}.$$
 
:$$s_0 =  \sqrt{0.5\, {\rm W}}  \hspace{0.05cm}.$$
*Unter der Annahme, dass der Sender mit einem Widerstand von 50 Ω abgeschlossen ist, entspricht dies dem folgenden Spannungswert:
+
*Unter der Annahme,  dass der Sender mit einem Widerstand von  $50\ \rm  Ω$  abgeschlossen ist,  entspricht dies dem folgenden Spannungswert:
s_0 =  \sqrt{0.5\, {\rm W}\hspace{0.05cm}.
+
:$$s_0^2 0.5\, {\rm W} \cdot 50\, {\rm \Omega} = 25\, {\rm V}^2 \hspace{0.15cm} \Rightarrow \hspace{0.15cm} s_0 =5\, {\rm V} \hspace{0.05cm}.$$
  
  
''Hinweise:''
+
 
*Die Aufgabe gehört zum  Kapitel [[Digitalsignalübertragung/Systemkomponenten_eines_Basisbandübertragungssystems|Systemkomponenten eines Basisbandübertragungssystems]].
+
 
*Bezug genommen wird insbesondere auf den Abschnitt[[Digitalsignalübertragung/Systemkomponenten_eines_Basisbandübertragungssystems#Kenngr.C3.B6.C3.9Fen_des_digitalen_Senders|Kenngrößen des digitalen Senders]].
+
Hinweise:  
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
+
*Die Aufgabe gehört zum  Kapitel  [[Digitalsignalübertragung/Systemkomponenten_eines_Basisbandübertragungssystems|"Systemkomponenten eines Basisbandübertragungssystems"]].
 +
*Bezug genommen wird insbesondere auf den Abschnitt  [[Digitalsignalübertragung/Systemkomponenten_eines_Basisbandübertragungssystems#Kenngr.C3.B6.C3.9Fen_des_digitalen_Senders|"Kenngrößen des digitalen Senders"]].  
 
*Gegeben ist das folgende unbestimmte Integral:
 
*Gegeben ist das folgende unbestimmte Integral:
 
:$$\int \cos^4(a  x)\,{\rm d}x = \frac{3}{8} \cdot x + \frac{1}{4a} \cdot \sin(2 a  x)+ \frac{1}{32a} \cdot \sin(4 a
 
:$$\int \cos^4(a  x)\,{\rm d}x = \frac{3}{8} \cdot x + \frac{1}{4a} \cdot \sin(2 a  x)+ \frac{1}{32a} \cdot \sin(4 a
Zeile 39: Zeile 40:
  
 
Handelt es sich bei $s_{\rm R}(t)$ und $s_{\rm C}(t)$ um unipolare oder bipolare Signale?
 
Handelt es sich bei $s_{\rm R}(t)$ und $s_{\rm C}(t)$ um unipolare oder bipolare Signale?
|type="[]"}
+
|type="()"}
- $s_{\rm R}(t)$ ist ein bipolares Signal.
+
- $s_{\rm R}(t)$  ist ein bipolares Signal und  $s_{\rm C}(t)$  ein unipolares.
+ $s_{\rm c}(t)$ ist ein bipolares Signal.
+
+ $s_{\rm C}(t)$  ist ein bipolares Signall und  $s_{\rm R}(t)$  ein unipolares.
  
  
{Wie groß ist die äquivalente Impulsdauer $\Delta t_{\rm S}$, normiert auf die Symboldauer $T$?
+
{Wie groß ist die äquivalente Impulsdauer  $\Delta t_{\rm S}$,  normiert auf die Symboldauer  $T$?
 
|type="{}"}
 
|type="{}"}
$\text{Beim Signal}\ s_{\rm R}(t) \text{:} \ \ \Delta t_{\rm S}/T \ = \ $ { 1 3% }  
+
$\text{beim Signal}\ \ s_{\rm R}(t) \text{:} \ \ \Delta t_{\rm S}/T \ = \ $ { 1 3% }  
$\text{beim Signal}\ s_{\rm C}(t) \text{:} \ \ \Delta t_{\rm S}/T \ = \ $ { 0.5 3% }  
+
$\text{beim Signal}\ \ s_{\rm C}(t) \text{:} \ \ \Delta t_{\rm S}/T \ = \ $ { 0.5 3% }  
  
{Wie groß ist die Energie des rechteckförmigen Sendegrundimpulses??
+
{Wie groß ist die Energie des rechteckförmigen Sendegrundimpulses  $g_s(t)$?
 
|type="{}"}
 
|type="{}"}
 
$E_g \ = \ $ { 0.5 } $\ \cdot 10^{-6}\ \rm Ws$  
 
$E_g \ = \ $ { 0.5 } $\ \cdot 10^{-6}\ \rm Ws$  
  
{Wie groß ist die Leistung des rechteckförmigen Sendesignals $s_{\rm R}(t)$?
+
{Wie groß ist die Leistung des rechteckförmigen Sendesignals  $s_{\rm R}(t)$?
 
|type="{}"}
 
|type="{}"}
 
$P_{\rm S} \ = \ $ { 0.25 3% } $\ \rm W$  
 
$P_{\rm S} \ = \ $ { 0.25 3% } $\ \rm W$  
  
{Wie groß ist die Energie des $\cos^2–Sendegrundimpulses?
+
{Wie groß ist die Energie des  $\cos^2$–Sendegrundimpulses  $g_s(t)$?
 
|type="{}"}
 
|type="{}"}
 
$E_g \ = \ $ { 0.1875 3% } $\ \cdot 10^{-6}\ \rm Ws$  
 
$E_g \ = \ $ { 0.1875 3% } $\ \cdot 10^{-6}\ \rm Ws$  
  
{Wie groß ist die Leistung des rechteckförmigen Sendesignals $s_{\rm C}(t)$?
+
{Wie groß ist die Leistung des Sendesignals  $s_{\rm C}(t)$?
 
|type="{}"}
 
|type="{}"}
 
$P_{\rm S} \ = \ $ { 0.1875 3% } $\ \rm W$  
 
$P_{\rm S} \ = \ $ { 0.1875 3% } $\ \rm W$  
Zeile 70: Zeile 71:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2</u>:
+
'''(1)'''&nbsp; Richtig ist der&nbsp; <u>Lösungsvorschlag 2</u>:
*In beiden Fällen kann das Sendesignal in folgender Form
+
*In beiden Fällen kann das Sendesignal in folgender Form dargestellt werden:
 
:$$s(t) = \sum_{(\nu)} a_\nu \cdot g_s ( t - \nu \cdot T)$$
 
:$$s(t) = \sum_{(\nu)} a_\nu \cdot g_s ( t - \nu \cdot T)$$
*Beim Signal $s_{\rm R}(t)$ sind die Amplitudenkoeffizienten $a_ν$ entweder $0$ oder $1$. Es liegt also ein unipolares Signal vor.  
+
*Beim Signal&nbsp; $s_{\rm R}(t)$&nbsp; sind die Amplitudenkoeffizienten&nbsp; $a_ν$&nbsp; entweder&nbsp; $0$&nbsp; oder&nbsp; $1$.&nbsp; Es liegt also ein unipolares Signal vor.  
*Beim bipolaren Signal $s_{\rm R}(t)$ gilt dagegen $a_ν ∈ \{–1, +1\}$.  
+
*Beim bipolaren Signal&nbsp; $s_{\rm R}(t)$&nbsp; gilt dagegen&nbsp; $a_ν ∈ \{–1, +1\}$.  
  
  
'''(2)'''&nbsp; Das Signal $s_{\rm R}(t)$ ist NRZ–rechteckförmig. Dementsprechend sind sowohl die absolute Impulsdauer $T_{\rm S}$ als auch die äquivalente Impulsdauer $\Delta t_{\rm S}$ gleich der Symboldauer $T$:
+
'''(2)'''&nbsp; Das Signal&nbsp; $s_{\rm R}(t)$&nbsp; ist NRZ–rechteckförmig.  
 +
*Dementsprechend sind sowohl die absolute Impulsdauer&nbsp; $T_{\rm S}$&nbsp; als auch die äquivalente Impulsdauer&nbsp; $\Delta t_{\rm S}$&nbsp; gleich der Symboldauer $T$:
 
:$$T_{\rm S} / T = 1\hspace{0.05cm},\hspace{0.3cm}\Delta t_{\rm S} / T \hspace{0.1cm}\underline{ = 1 }\hspace{0.05cm}.$$
 
:$$T_{\rm S} / T = 1\hspace{0.05cm},\hspace{0.3cm}\Delta t_{\rm S} / T \hspace{0.1cm}\underline{ = 1 }\hspace{0.05cm}.$$
Der Sendegrundimpuls für das Signal $s_{\rm C}(t)$ lautet:
+
*Der Sendegrundimpuls für das Signal&nbsp; $s_{\rm C}(t)$&nbsp; lautet:
 
:$$g_s(t)  =  \left\{ \begin{array}{c} s_0 \cdot \cos^2(\pi \cdot \frac{t}{T})  \\
 
:$$g_s(t)  =  \left\{ \begin{array}{c} s_0 \cdot \cos^2(\pi \cdot \frac{t}{T})  \\
 
  0 \\  \end{array} \right.\quad
 
  0 \\  \end{array} \right.\quad
Zeile 87: Zeile 89:
 
{\rm sonst} \hspace{0.05cm}.  \\
 
{\rm sonst} \hspace{0.05cm}.  \\
 
\end{array}$$
 
\end{array}$$
Aus der Grafik auf der Angabenseite erkennt man, dass für den $\cos^2$–Impuls folgende Werte gelten:
+
*Aus der Grafik auf der Angabenseite erkennt man,&nbsp; dass für den&nbsp; $\cos^2$–Impuls&nbsp; folgende Werte gelten:
 
:$$T_{\rm S} / T = 1\hspace{0.05cm},\hspace{0.3cm}\Delta t_{\rm S} / T \hspace{0.1cm}\underline{ = 0.5} \hspace{0.05cm}.$$
 
:$$T_{\rm S} / T = 1\hspace{0.05cm},\hspace{0.3cm}\Delta t_{\rm S} / T \hspace{0.1cm}\underline{ = 0.5} \hspace{0.05cm}.$$
  
c)  Für die Energie des Rechteckimpulses gilt:
 
d)  Bei einem bipolaren Rechtecksignal würde gelten:
 
Da das Signal sR(t) hier jedoch unipolar ist, gilt in der Hälfte der Zeit sR(t) = 0. Somit ergibt sich:
 
e)  Für die Energie des cos2–Impulses gilt:
 
Hierbei ist die unter Punkt c) hergeleitete Formel und die Symmetrie von gs(t) um den Zeitpunkt t = 0 berücksichtigt. Das Integral ist bei der Aufgabenbeschreibung angegeben, wobei a = π/T zu setzen ist:
 
Die untere Grenze t = 0 liefert stets das Ergebnis 0. Hinsichtlich der oberen Grenze ergibt sich nur für den ersten Term ein von 0 verschiedenes Ergebnis. Daraus folgt:
 
f)  Beim bipolaren Signal sC(t) gilt folgender Zusammenhang:
 
  
 +
'''(3)'''&nbsp; Für die Energie des Rechteckimpulses gilt:
 +
:$$E_g =  \int^{+\infty} _{-\infty} g_s^2(t)\,{\rm
 +
d}t = s_0^2 \cdot T = 0.5\, {\rm W} \cdot 1\, {\rm &micro; s} \hspace{0.1cm}\underline{= 0.5 \cdot 10^{-6}\, {\rm
 +
Ws}}\hspace{0.05cm}.$$
 +
 +
 +
'''(4)'''&nbsp; Bei einem bipolaren Rechtecksignal würde gelten:
 +
:$$s_{\rm R}^2(t)= s_0^2 = {\rm const.} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_s =  s_0^2 \cdot
 +
\lim_{T_{\rm M} \to \infty} \frac{1}{T_{\rm M}} \cdot \int ^{T_{\rm M}/2} _{-T_{\rm M}/2} \,{\rm
 +
d}t = s_0^2 \hspace{0.05cm}.$$
 +
*Da das Signal&nbsp; $s_{\rm R}(t)$&nbsp; hier jedoch unipolar ist,&nbsp; gilt in der Hälfte der Zeit&nbsp; $s_{\rm R}(t)= 0$.&nbsp; Somit ergibt sich:
 +
:$$P_{\rm S} = {1}/{2} \cdot s_0^2 \hspace{0.1cm}\underline{= 0.25 \,{\rm
 +
W}}  \hspace{0.05cm}.$$
 +
 +
 +
'''(5)'''&nbsp; Für die Energie des&nbsp; $\cos^2$–Impulses gilt:
 +
:$$E_g =  \int^{+\infty} _{-\infty} g_s^2(t)\,{\rm
 +
d}t = 2 \cdot s_0^2 \cdot \int^{T/2} _{0} \cos^4(\pi \cdot {t}/{T})\,{\rm
 +
d}t \hspace{0.05cm}.$$
 +
*Hierbei ist die unter Punkt&nbsp; '''(3)'''&nbsp; hergeleitete Formel und die Symmetrie von&nbsp; $g_s(t)$&nbsp; um den Zeitpunkt&nbsp; $t = 0$&nbsp; berücksichtigt.
 +
*Das Integral ist bei der Aufgabenbeschreibung angegeben,&nbsp; wobei&nbsp; $a = π/T$&nbsp; zu setzen ist:
 +
:$$E_g =    2  \cdot s_0^2 \cdot \left [ \frac{3}{8} \cdot t + \frac{T}{4\pi} \cdot \sin(2 \pi \frac{t}{T})+ \frac{T}{32\pi} \cdot
 +
\sin(4 \pi \frac{t}{T})\right ]_{0}^{T/2}\hspace{0.05cm}.$$
 +
*Die untere Grenze&nbsp; $t = 0$&nbsp; liefert stets das Ergebnis&nbsp; $0$.&nbsp; Hinsichtlich der oberen Grenze ergibt sich nur für den ersten Term ein von&nbsp; $0$&nbsp; verschiedenes Ergebnis.&nbsp; Also:
 +
:$$E_g =    2  \cdot s_0^2 \cdot  \frac{3}{8} \cdot \frac{T}{2} = \frac{3}{8} \cdot 5 \cdot 10^{-7}\, {\rm
 +
Ws} \hspace{0.1cm}\underline{ = 0.1875 \cdot 10^{-6}\, {\rm
 +
Ws}}\hspace{0.05cm}.$$
  
'''(3)'''&nbsp; Um die Überlegungen zur Teilaufgabe (2) nutzen zu können, transformieren wir die Aufgabenstellung in den Uplink: Der gleiche Kanal mit der Kennung $k_{\rm F}$, der im Downlink die Frequenz 940 MHz nutzt, liegt im Uplink bei 895 MHz. Damit gilt:
 
:$$k_{\rm F} = 1 + \frac {895 \,\,{\rm MHz } - 890.2 \,\,{\rm MHz } }{0.2 \,\,{\rm MHz }} \hspace{0.15cm}\underline {= 25}.$$
 
  
'''(4)'''&nbsp; In einem TDMA–Rahmen der Dauer 4.62 Millisekunden können $K_{\rm T}\hspace{0.15cm}\underline= 8}$ Zeitschlitze mit jeweiliger Dauer $T = 577 \ \rm μs$ untergebracht werden. ''Anmerkung:'' Bei GSM wird tatsächlich $K_{\rm T} = 8$ verwendet.
+
'''(6)'''&nbsp; Beim bipolaren Signal&nbsp; $s_{\rm C}(t)$&nbsp; gilt folgender Zusammenhang:
 +
:$$P_{\rm S} = \frac{ E_g}{T} = \frac{ 1.875 \cdot 10^{-7}\, {\rm
 +
  Ws}}{10^{-6}\, {\rm s}}\hspace{0.1cm}\underline{ = 0.1875 \,{\rm W}}  \hspace{0.05cm}.$$
  
  
'''(5)'''&nbsp; Mit den Ergebnissen der Teilaufgaben (1) und (4) erhält man:
 
:$$K = K_{\rm F} \cdot K_{\rm T} = 124 \cdot 8 \hspace{0.15cm}\underline {= 992}$$
 
  
'''(6)'''&nbsp; Während der Zeit $T = 577 \ \rm μs$ müssen 156 Bit übertragen werden. Damit stehen für jedes Bit die Zeit $T_{\rm B} = 3.699 \ \rm μs$ zur Verfügung. Daraus ergibt sich die (Brutto&ndash;)Bitrate
 
:$$R_{\rm Brutto} = \frac {1 }{T_{\rm B}}\hspace{0.15cm}\underline {\approx 270 \,\,{\rm kbit/s }}.$$
 
Diese Brutto–Bitrate beinhaltet neben den das Sprachsignal beschreibenden Datensymbolen auch die Trainigssequenz zur Kanalschätzung und die Redundanz für die Kanalcodierung. Die Netto–Bitrate beträgt beim GSM–System für jeden der acht Benutzer nur etwa 13 kbit/s.
 
  
 
{{ML-Fuß}}
 
{{ML-Fuß}}

Aktuelle Version vom 28. April 2022, 08:57 Uhr


Betrachtete Sendegrundimpulse

Wir untersuchen in dieser Aufgabe die zwei in der Grafik dargestellten Sendesignale  $s_{\rm R}(t)$  und  $s_{\rm C}(t)$  mit Rechteck– bzw.  $\cos^2$–Sendegrundimpuls.  Insbesondere sollen für die jeweiligen Sendegrundimpulse  $g_s(t)$  folgende Kenngrößen berechnet werden:

  • die äquivalente Impulsdauer von  $g_s(t)$:
$$\Delta t_{\rm S} = \frac {\int ^{+\infty} _{-\infty} \hspace{0.15cm} g_s(t)\,{\rm d}t}{{\rm Max} \hspace{0.05cm}[g_s(t)]} \hspace{0.05cm},$$
  • die Energie von  $g_s(t)$:
$$E_g = \int^{+\infty} _{-\infty} g_s^2(t)\,{\rm d}t \hspace{0.05cm},$$
  • die Leistung des Sendesignals  $s(t)$:
$$P_{\rm S} = \lim_{T_{\rm M} \to \infty} \frac{1}{+T_{\rm M}} \cdot \int^{+T_{\rm M}/2} _{-T_{\rm M}/2} s^2(t)\,{\rm d}t \hspace{0.05cm}.$$


Gehen Sie bei Ihren Berechnungen stets davon aus,  dass die beiden möglichen Amplitudenkoeffizienten gleichwahrscheinlich sind und dass der zeitliche Abstand zwischen benachbarten Symbolen  $T = 1 \ \rm µ s$  beträgt.  Dies entspricht einer Bitrate von  $R = 1 \ \rm Mbit/s$.

  • Der  (positive)  Maximalwert des Sendesignals ist in beiden Fällen gleich
$$s_0 = \sqrt{0.5\, {\rm W}} \hspace{0.05cm}.$$
  • Unter der Annahme,  dass der Sender mit einem Widerstand von  $50\ \rm Ω$  abgeschlossen ist,  entspricht dies dem folgenden Spannungswert:
$$s_0^2 = 0.5\, {\rm W} \cdot 50\, {\rm \Omega} = 25\, {\rm V}^2 \hspace{0.15cm} \Rightarrow \hspace{0.15cm} s_0 =5\, {\rm V} \hspace{0.05cm}.$$



Hinweise:

$$\int \cos^4(a x)\,{\rm d}x = \frac{3}{8} \cdot x + \frac{1}{4a} \cdot \sin(2 a x)+ \frac{1}{32a} \cdot \sin(4 a x)\hspace{0.05cm}.$$


Fragebogen

1

Handelt es sich bei $s_{\rm R}(t)$ und $s_{\rm C}(t)$ um unipolare oder bipolare Signale?

$s_{\rm R}(t)$  ist ein bipolares Signal und  $s_{\rm C}(t)$  ein unipolares.
$s_{\rm C}(t)$  ist ein bipolares Signall und  $s_{\rm R}(t)$  ein unipolares.

2

Wie groß ist die äquivalente Impulsdauer  $\Delta t_{\rm S}$,  normiert auf die Symboldauer  $T$?

$\text{beim Signal}\ \ s_{\rm R}(t) \text{:} \ \ \Delta t_{\rm S}/T \ = \ $

$\text{beim Signal}\ \ s_{\rm C}(t) \text{:} \ \ \Delta t_{\rm S}/T \ = \ $

3

Wie groß ist die Energie des rechteckförmigen Sendegrundimpulses  $g_s(t)$?

$E_g \ = \ $

$\ \cdot 10^{-6}\ \rm Ws$

4

Wie groß ist die Leistung des rechteckförmigen Sendesignals  $s_{\rm R}(t)$?

$P_{\rm S} \ = \ $

$\ \rm W$

5

Wie groß ist die Energie des  $\cos^2$–Sendegrundimpulses  $g_s(t)$?

$E_g \ = \ $

$\ \cdot 10^{-6}\ \rm Ws$

6

Wie groß ist die Leistung des Sendesignals  $s_{\rm C}(t)$?

$P_{\rm S} \ = \ $

$\ \rm W$


Musterlösung

(1)  Richtig ist der  Lösungsvorschlag 2:

  • In beiden Fällen kann das Sendesignal in folgender Form dargestellt werden:
$$s(t) = \sum_{(\nu)} a_\nu \cdot g_s ( t - \nu \cdot T)$$
  • Beim Signal  $s_{\rm R}(t)$  sind die Amplitudenkoeffizienten  $a_ν$  entweder  $0$  oder  $1$.  Es liegt also ein unipolares Signal vor.
  • Beim bipolaren Signal  $s_{\rm R}(t)$  gilt dagegen  $a_ν ∈ \{–1, +1\}$.


(2)  Das Signal  $s_{\rm R}(t)$  ist NRZ–rechteckförmig.

  • Dementsprechend sind sowohl die absolute Impulsdauer  $T_{\rm S}$  als auch die äquivalente Impulsdauer  $\Delta t_{\rm S}$  gleich der Symboldauer $T$:
$$T_{\rm S} / T = 1\hspace{0.05cm},\hspace{0.3cm}\Delta t_{\rm S} / T \hspace{0.1cm}\underline{ = 1 }\hspace{0.05cm}.$$
  • Der Sendegrundimpuls für das Signal  $s_{\rm C}(t)$  lautet:
$$g_s(t) = \left\{ \begin{array}{c} s_0 \cdot \cos^2(\pi \cdot \frac{t}{T}) \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{f\ddot{u}r}} \\ \\ \end{array}\begin{array}{*{20}c} -T/2 \le t \le +T/2 \hspace{0.05cm}, \\ {\rm sonst} \hspace{0.05cm}. \\ \end{array}$$
  • Aus der Grafik auf der Angabenseite erkennt man,  dass für den  $\cos^2$–Impuls  folgende Werte gelten:
$$T_{\rm S} / T = 1\hspace{0.05cm},\hspace{0.3cm}\Delta t_{\rm S} / T \hspace{0.1cm}\underline{ = 0.5} \hspace{0.05cm}.$$


(3)  Für die Energie des Rechteckimpulses gilt:

$$E_g = \int^{+\infty} _{-\infty} g_s^2(t)\,{\rm d}t = s_0^2 \cdot T = 0.5\, {\rm W} \cdot 1\, {\rm µ s} \hspace{0.1cm}\underline{= 0.5 \cdot 10^{-6}\, {\rm Ws}}\hspace{0.05cm}.$$


(4)  Bei einem bipolaren Rechtecksignal würde gelten:

$$s_{\rm R}^2(t)= s_0^2 = {\rm const.} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} P_s = s_0^2 \cdot \lim_{T_{\rm M} \to \infty} \frac{1}{T_{\rm M}} \cdot \int ^{T_{\rm M}/2} _{-T_{\rm M}/2} \,{\rm d}t = s_0^2 \hspace{0.05cm}.$$
  • Da das Signal  $s_{\rm R}(t)$  hier jedoch unipolar ist,  gilt in der Hälfte der Zeit  $s_{\rm R}(t)= 0$.  Somit ergibt sich:
$$P_{\rm S} = {1}/{2} \cdot s_0^2 \hspace{0.1cm}\underline{= 0.25 \,{\rm W}} \hspace{0.05cm}.$$


(5)  Für die Energie des  $\cos^2$–Impulses gilt:

$$E_g = \int^{+\infty} _{-\infty} g_s^2(t)\,{\rm d}t = 2 \cdot s_0^2 \cdot \int^{T/2} _{0} \cos^4(\pi \cdot {t}/{T})\,{\rm d}t \hspace{0.05cm}.$$
  • Hierbei ist die unter Punkt  (3)  hergeleitete Formel und die Symmetrie von  $g_s(t)$  um den Zeitpunkt  $t = 0$  berücksichtigt.
  • Das Integral ist bei der Aufgabenbeschreibung angegeben,  wobei  $a = π/T$  zu setzen ist:
$$E_g = 2 \cdot s_0^2 \cdot \left [ \frac{3}{8} \cdot t + \frac{T}{4\pi} \cdot \sin(2 \pi \frac{t}{T})+ \frac{T}{32\pi} \cdot \sin(4 \pi \frac{t}{T})\right ]_{0}^{T/2}\hspace{0.05cm}.$$
  • Die untere Grenze  $t = 0$  liefert stets das Ergebnis  $0$.  Hinsichtlich der oberen Grenze ergibt sich nur für den ersten Term ein von  $0$  verschiedenes Ergebnis.  Also:
$$E_g = 2 \cdot s_0^2 \cdot \frac{3}{8} \cdot \frac{T}{2} = \frac{3}{8} \cdot 5 \cdot 10^{-7}\, {\rm Ws} \hspace{0.1cm}\underline{ = 0.1875 \cdot 10^{-6}\, {\rm Ws}}\hspace{0.05cm}.$$


(6)  Beim bipolaren Signal  $s_{\rm C}(t)$  gilt folgender Zusammenhang:

$$P_{\rm S} = \frac{ E_g}{T} = \frac{ 1.875 \cdot 10^{-7}\, {\rm Ws}}{10^{-6}\, {\rm s}}\hspace{0.1cm}\underline{ = 0.1875 \,{\rm W}} \hspace{0.05cm}.$$