Aufgaben:Aufgabe 1.13Z: Nochmals BEC–Decodierung: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
K (Textersetzung - „* Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “)
Zeile 1: Zeile 1:
 
{{quiz-Header|Buchseite=Kanalcodierung/Decodierung linearer Blockcodes}}
 
{{quiz-Header|Buchseite=Kanalcodierung/Decodierung linearer Blockcodes}}
  
[[Datei:P_ID2541__KC_Z_1_13.png|right|frame|Codetabelle des vorgegebenen Hamming–Codes $(7, 4, 3)$]]
+
[[Datei:P_ID2541__KC_Z_1_13.png|right|frame|Codetabelle des  $\rm HC \ (7, 4, 3)$]]
 +
 
 +
Wir betrachten wieder wie in der  [[Aufgaben:Aufgabe_1.13:_Decodierung_beim_binären_Auslöschungskanal_(BEC)|Aufgabe 1.13]]  die Decodierung eines  [[Kanalcodierung/Beispiele_binärer_Blockcodes#Hamming.E2.80.93Codes|Hamming–Codes]]  nach der Übertragung über einen Auslöschungskanal   ⇒   [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#Binary_Erasure_Channel_.E2.80.93_BEC|Binary Erasure Channel]]  (abgekürzt BEC).
 +
 
 +
Der  $(7, 4, 3)$–Hamming–Code wird durch die nebenstehende Codetabelle  $\underline{u}_{i} → \underline{x}_{i}$  vollständig beschrieben, anhand derer alle Lösungen gefunden werden können.
 +
 
  
Wir betrachten wieder wie in der [[Aufgaben:Aufgabe_1.13:_Decodierung_beim_binären_Auslöschungskanal_(BEC)|Aufgabe 1.13]] die Decodierung eines [[Kanalcodierung/Beispiele_binärer_Blockcodes#Hamming.E2.80.93Codes|Hamming–Codes]] nach der Übertragung über einen Auslöschungskanal   ⇒   [[Kanalcodierung/Kanalmodelle_und_Entscheiderstrukturen#Binary_Erasure_Channel_.E2.80.93_BEC|Binary Erasure Channel]] (abgekürzt BEC).
 
  
Der $(7, 4, 3)$–Hamming–Code wird durch die nebenstehende Codetabelle $\underline{u}_{i} → \underline{x}_{i}$ vollständig beschrieben, anhand derer alle Lösungen gefunden werden können.
 
  
  
Zeile 11: Zeile 14:
  
 
''Hinweise'' :  
 
''Hinweise'' :  
* Die Aufgabe bezieht sich auf das Kapitel [[Kanalcodierung/Decodierung_linearer_Blockcodes|Decodierung linearer Blockcodes]].
+
* Die Aufgabe bezieht sich auf das Kapitel  [[Kanalcodierung/Decodierung_linearer_Blockcodes|Decodierung linearer Blockcodes]].
* Im Gegensatz zur  [[Aufgaben:Aufgabe_1.13:_Decodierung_beim_binären_Auslöschungskanal_(BEC)|Aufgabe 1.13]] soll hier die Lösung nicht formal, sondern intuitiv gefunden werden.
+
* Im Gegensatz zur  [[Aufgaben:Aufgabe_1.13:_Decodierung_beim_binären_Auslöschungskanal_(BEC)|Aufgabe 1.13]]  soll hier die Lösung nicht formal, sondern intuitiv gefunden werden.
 
   
 
   
  
Zeile 18: Zeile 21:
 
===Fragebogen===
 
===Fragebogen===
 
<quiz display=simple>
 
<quiz display=simple>
Wie groß ist die minimale Distanz $\ d_{\rm min}$ des vorliegenden Codes?
+
Wie groß ist die minimale Distanz&nbsp; $\ d_{\rm min}$&nbsp; des vorliegenden Codes?
 
|type="{}"}
 
|type="{}"}
 
$\ d_{\rm min} \ = \ $ { 3 }
 
$\ d_{\rm min} \ = \ $ { 3 }
Zeile 27: Zeile 30:
 
- NEIN.
 
- NEIN.
  
{Bis zu wie vielen ''Erasures'' (Anzahl $e_{\rm max}$) ist die erfolgreiche Decodierung gewährleistet?
+
{Bis zu wie vielen Auslöschungen (&bdquo;Erasures&rdquo;; &nbsp; maximale Anzahl:&nbsp; $e_{\rm max})$&nbsp; ist eine erfolgreiche Decodierung gewährleistet?
 
|type="{}"}
 
|type="{}"}
 
$\ e_{\rm max} \ = \ $ { 2 }
 
$\ e_{\rm max} \ = \ $ { 2 }
  
{Wie lautet das gesendete Informationswort $\underline{u}$ für $\underline{y} = (1, 0, {\rm E}, {\rm E}, 0, 1, 0)$?
+
{Wie lautet das gesendete Informationswort&nbsp; $\underline{u}$&nbsp; für&nbsp; $\underline{y} = (1, 0, {\rm E}, {\rm E}, 0, 1, 0)$?
 
|type="()"}
 
|type="()"}
 
- $\underline{u} = (1, 0, 0, 0),$
 
- $\underline{u} = (1, 0, 0, 0),$

Version vom 13. Mai 2019, 15:08 Uhr

Codetabelle des  $\rm HC \ (7, 4, 3)$

Wir betrachten wieder wie in der  Aufgabe 1.13  die Decodierung eines  Hamming–Codes  nach der Übertragung über einen Auslöschungskanal   ⇒   Binary Erasure Channel  (abgekürzt BEC).

Der  $(7, 4, 3)$–Hamming–Code wird durch die nebenstehende Codetabelle  $\underline{u}_{i} → \underline{x}_{i}$  vollständig beschrieben, anhand derer alle Lösungen gefunden werden können.




Hinweise :


Fragebogen

1

Wie groß ist die minimale Distanz  $\ d_{\rm min}$  des vorliegenden Codes?

$\ d_{\rm min} \ = \ $

2

Ist der Code systematisch?

JA.
NEIN.

3

Bis zu wie vielen Auslöschungen („Erasures”;   maximale Anzahl:  $e_{\rm max})$  ist eine erfolgreiche Decodierung gewährleistet?

$\ e_{\rm max} \ = \ $

4

Wie lautet das gesendete Informationswort  $\underline{u}$  für  $\underline{y} = (1, 0, {\rm E}, {\rm E}, 0, 1, 0)$?

$\underline{u} = (1, 0, 0, 0),$
$\underline{u}= (1, 0, 0, 1),$
$\underline{u} = (1, 0, 1, 0),$
$\underline{u} = (1, 0, 1, 1).$

5

Welche der nachfolgenden Empfangsworte können decodiert werden?

$\underline{y}_{\rm A }= (1, 0, 0, 1, {\rm E}, {\rm E}, {\rm E}),$
$\underline{y}_{\rm B} = ({\rm E}, {\rm E }, 0, {\rm E}, 0, 1, 0),$
$\underline{y}_{\rm C} = ({\rm E}, {\rm E}, {\rm E}, 1, 0, 1, 0),$
$\underline{y}_{\rm D} = (1, 0, {\rm E}, {\rm E}, {\rm E}, {\rm E}, 0).$


Musterlösung

(1)  Betrachtet wird hier der $(7, 4, 3)$–Hamming–Code. Dementsprechend ist die minimale Distanz $d_{\rm min} \ \underline{= 3}$.


(2)  Die ersten $k = 4$ Bit eines jeden Codewortes $\underline{x}$ stimmen mit dem Informationswort $\underline{u}$ überein. Richtig ist somit JA.


(3)  Werden nicht mehr als $e_{\rm max} = d_{\rm min} – 1 \underline{ = 2}$ Bit ausgelöscht,so ist eine Decodierung mit Sicherheit möglich.

  • Jedes Codewort unterscheidet sich von jedem anderen in mindestens drei Bitpositionen.
  • Bei nur zwei Auslöschungen kann deshalb das Codewort in jedem Fall rekonstruiert werden.


(4)  In der Codetabelle findet man ein einziges Codewort, das mit „$10$” beginnt und mit „$010$” endet, nämlich $\underline{x} = (1, 0, 0, 1, 0, 1, 0)$. Da es sich um einen systematischen Code handelt, beschreiben die ersten $k = 4$ Bit das Informationswort $\underline{u} = (1, 0, 0, 1)$   ⇒  Antwort 2.


(5)  Richtig sind die Lösungsvorschläge 1 und 2.

  • $\underline{y}_{\rm D} = (1, 0, {\rm E}, {\rm E}, {\rm E}, {\rm E}, 0)$ kann nicht decodiert werden, da weniger als $k = 4$ Bit (Anzahl der Informationsbit) ankommen.
  • $\underline{y}_{\rm C} = ( {\rm E}, {\rm E}, {\rm E}, 1, 0, 1, 0)$ ist ebenfalls nicht decodierbar, da sowohl $\underline{x} = (0, 1, 1, 1, 0, 1, 0)$ als auch $\underline{x} = (1, 0, 0, 1, 0, 1, 0)$ als mögliches Ergebnis in Frage kommen.
  • $\underline{y}_{\rm B} = ( {\rm E}, {\rm E}, 0, {\rm E}, 0, 1, 0)$ ist dagegen decodierbar, da von allen 16 möglichen Codeworten nur $\underline{x} = (1, 0, 0, 1, 0, 1, 0)$ mit $\underline{y}_{\rm B}$ in den (richtigen) Bitpositionen 3, 5, 6 und 7 übereinstimmt.
  • $\underline{y}_{\rm A} = (1, 0, 0, 1, {\rm E}, {\rm E}, {\rm E})$ ist decodierbar. Es fehlen nur die $m = 3$ Prüfbit. Damit liegt das Informationswort $\underline{u} = (1, 0, 0, 1)$ ebenfalls fest (systematischer Code).